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1. Summary of Progress

Work has proceeded according to schedule on all research topics.

(i) Uniquely well defined clusters of Gold are now available for
optical measurements.

(ii) A comprehensive experimental investigation has been carried
out to determine the non-linearity of these samples on a
femtosecond timescale. These results are presented below and
prove that:

(a) the nonlinear refractive index rises and relaxes on a
sub-picosecond timescale.

(b) the nonlinearity is predominant positive imaginary originating
from a hot electron contribution.

(c) the nonlinearity is independent of the size of the particle.

2. Staffing

No major changes in staffing have taken place.
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INTRODUCTION

The interaction of light with matter is usually characterised by several

phenomena. such as light absorption, refraction, scattering etc. All of these arc

reCarded as linear optical properties of the material, dependent on wavelength hut

independent of the intensity of the light. I lowever. if the illumination is made

sufficiently intense, the optical properties begin to depend on the intensity and other

characteristics of the light- The light waves may then interact with each other as well as

with the medium. The study of such interactions is the field of nonlinear optics. It is a

field that has experienced a rapid growth of interest. There are three main motivations

for this. First, there is the possibility of exploiting the nonlinear behaviour in various

devices. The most important of these are frequency converters, in which laser radiation

at one frequency is converted into coherent radiation at a new frequency, by, for

example, harmonic generation, sum-frequency generation ctc.(I) Because the converted

radiation may be at a frequency that is not directly available from a laser source, these

frequency conversion techniques provide an important means of extending the spectral

range covered by coherent sources. A second reason for studying nonlinear optical

processes is that they set a limit to the light flux that can be passed through a medium.

For example, two photon absorption can lead to depletion of the incident light and self-

focusing leads to distortion of the incident beam profile. A third interest in nonlinear

optical effects lies in their use as a means of obtaining information about the

microscopic properties of the atoms of molecules that constitute the nonliner medium..

Two photon absorption, for example. can be used to study energy levels that are

inaccessible by single photon absorption.

When an electric field is incident on a conductor consisting of negatively and

positively charged particles, it gives rise to a flow of current - the positive charges

move in the direction of the field while the negative ones move in the opposite

direction. In the case of dielectric's, on the other hand, the charged particles are not free

to move but arc bound together. The effect of an electric field on such materials is to

induce a polarisation that is proportional to the applied field. However, as the intensity

of the field is increased the linear dependence of the two terms no longer holds. The

polarisation must now he expressed as a power series in the field, as follows:

PC,(x(')E+XE +ZE y"'E .) (..1)



X ' - --. Nonlinear susceptibilities.

The nonlinear susceptibility is a tensor object and reflects the svnmletr\ ofl thie

material. For a crystal with inversion svninietrv. i.e. one that is centrosymmetric, the

second term and higher even terms, % etc., are zero. I lowever y is always

lion zero.

At first crystalline nonlinear media were seen to offer the greatest device

potential. The reason for this lay in the fact that %e is zero unless the medium lacks a

centre of symmetry. Nonlinear effects in centrosymmetric media would thus depend on

higher-order and therefore presumably smaller nonlinear terms. Unfortunately,
however, few crystalline materials have proved capable of satisfying the list of

requirements for a good nonlinear material. A number of significant advantages are
offered by liquids and gases. They can be easily prepared, with good optical quality

over large dimensions. Also, they are less prone to suffer irreversible damage at high
intensities.

In order for nonlinear behaviour to manifest itself, the field incident on the
material must be comparable to the internal field E. which binds together its electrons
and ions; typically Ea = 3 x 10'0 Vnz'. To obtain an optical field of such a magnitude.

an incident intensity of = 101, Wcm 2 is required. However, such high intensities are

not in fact necessary for the observation of many nonlinear-optical effects. One reason
is that, provided the assembly of induced dipoles oscillates coherently, the field that
they radiate individually can, in certain circumstances, add together constructively to
produce a much larger total intensity. Tllhis phenomenon is termed "phase matching".

The intensity required to observe some nonlinear processes can be further

reduced by many orders of magnitude by choosing one or more of the optical
frequencies involved so that they lie close to a resonant frequency of the oscillating

dipoles; this is termed "resonance enhancement". In nonlinear optics resonant
enhancement is utilised in two ways: Firstly, it allows nonlinear processes and devices
to operate effectively at lower power levels, thus increasing their range of use and
efficiency. Secondly, resonant nonlinear phenomena provide the basis for "nonlinear
spectroscopy"; the observation of these effect can provide information about the
structure of matter that is not accessible using conventional linear optical spectroscopy.

In order to be useful in an optoelectronic device, a material requires a large
nonlinear susceptibility along with a fast response time. The aim of this study is to
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parameters.

THE SUSCEPTIBILITY TENSOR

By considering the dynamic behaviour of charged particles in a medium under

the influence of an electric field, it is possible to derive explicit iormulae for the

susceptibility tensors of the medium. For simplicity it is assumed that the medium

consists of an assembly of microscopic polarizable units which are independent and

non interacting. Thus local field factors arc neglected. Local field corrections can be

introduced later without altering the general formul,

A straightforward derivation, using the density matrix approach leads to the

following formula for the third order susceptibility tensor X(3(, that depends on the

frequencies ao, (t), and (0, of the three electric fields involved

(3) -) d
Eo3! h !ird,,,

Srrbr r;, rd.-

1(92b + 001 )(02 (OASi -(0,)(2d - (0) +(•2 (d)•2a+ d

(f2,. o))(1,. o) - o,)f~j - 0')+ T~b.+ +('0 + Wj (fQl -COI)

rcz i/3 I' r I'l

"+ abr rf rd da +1.2)
(a '. + CO ' )( o- + +w, + t,- )( 0" + (+ J + (0 ) ( 1

Where p, a, P3, y are summed over the co-ordinates x, y and z,

0)" = () + (02 + ()3, where C0,' o)2, and (o3 are the frequencies of the applied fields,

the operator S implies intrinsic permutation symmetry,

N is the number density of molecules, i.e. the number of molecules/unit volume,

er!,, is the (ab)th element of the dipole moment matrix er", and

12,2 - E- E,- is the transition frequency.h
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the I requency denorninattors, of ihe type .2 - () approaches zero. Thus tile susceptibility

may he "resonantly enhanced" by choosing one or more ol the incident frequencies, or

combinations of them, to coincide with an optical transition frequency of the medium.

)bviouslv, as is apparent from the above formula, for the largest nonlinear

susceptibilities we require large values for the matrix elements of the electric-dipole

operator er and small frequency denominators.

"The use of resonance's to enhance a specific susceptibility often has the effect
of similarly enhancing other competing or undesirable processes. For example, by
allowing an input frequency to approach resonance with a single-photon molecular
transition, that input field may suffer a corresponding increase in absorption; this
occurs because the first-order susceptibility X() is also enhanced.

For very close resonance, the mathematical divergence's in the above formula
are unphysical. they occur only because higher order nonlinearities have been
neglected. When excited very close to resonant transitions, the molecules undergo large

perturbations - thus invalidating the small-perturbation approximations - and the
transition frequencies which occur in the denominator terms become field-dependent
themselves. When these strong field dependent perturbations, or level shifts, are taken

into account, the resulting induced polarisation remains finite. In many cases, however,
the resonant nonlinearities are dominated by various transition-line broadening
processes, perhaps due to interactions between the molecules, which also ensure that
the resonant susceptibilities do not diverge. A particular resonant process can then be
represented by a single order of nonlinearity derived using the small-perturbation
analysis, but with the addition of appropriate damping terms ±iF in the frequency
denominators of the susceptibilities as for example (S2,, + iF,, - w•. The damping

factor r,,,, is thus identified as a dephasing parameter appropriate to weak collisions,
and as such represents a spectral linewidth for the transition of frequency fQ,,. The

smallest values which the damping factors F/ can take are determined by spontaneous
emission, and in this case "b, is a natural lifetime in the absence of collisions and

other perturbations.

Thus when damping terms are inserted into the expression for the general third-
order susceptibility, the following expression is obtained:
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(~ + Ir,,4 + (0)(2a +±iT, + (, +'o))(2,, +iFJ + 1) (1.4)

Clearly, if the frequency which appears in a particular denominator term is far

removed from molecular resonance's, then the corresponding damping term can be

safely neglected.

A price paid for the resonant enhancement of optical nonlinearity is the slowing-

down of the speed of response, which may be a serious limitation for some applications

such as optical switching and signal processing.

The work done for this thesis is based on the measurement of the resonantly

enhanced nonlinear susceptibility, X131 of colloidal gold solutions, with the diameters

of the gold particles varying from 50-4(X)A. The reason for interest in these materials

lies in the fact that the properties of the inclusions are completely different from bulk

gold because of their small dimensions. This results in two confinement effects,

quantum confinement and dielectric confinement, which both have potential in

enhancing the macroscopic susceptibility of the solution and are also in themselves very

interesting phenomena to study. In chapter 2 the materials are described in more detail

and the confinement effects mentioned here are elaborated upon. Chapters 3, 4, 5 and 6

describe different experimental techniques that were used to study the materials and in

particular to measure their susceptibility and response times. Chapter 7 gives the final

conclusions of this study based on, both, the results obtained here and findings in the

extensive literature on this topic.
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'I'HE OPTICAL IROPFRTIES OF ARTIFICIAL. MAItFRIALS

In the carlv davy, olf nonlinear optics, the materials used for expeliIM , m .iCI.IN

devices were mainly inoiganic dielectric crystals, vapours, liquids and hulk

scimiconductors. More recently, interest has been focused oi new artificial solid S.ate

materials which olecr hinghcr nonlinearity. and in particular, those that allo w no inlinear

optical devices to operate clficiently at relatively low power levels. Several material.s

with large second-order nonlinearity have been successfully fabricated t)1.''hesc have

applications in devices such as compact optical-frequency doublers and paranictnc

amplifiers and osciHators. However, materials with large third -order nonlinearity aie of

greater interest currently, since the nonlinear refractive-index effect can be exploited for

switching, optical bistability, phase conjugation and other types of signal processin'-T).

A lot of advances have been made, of late, in the synthesis of organic materials,

inorganic semiconductors and metallic clusters and particles with a large third order

nonlinearity. The emphasis of this study is on composite materials composed of small

metallic particles embedded in a dielectric matrix. A composite medium is made of (at

least) two different component media, but it is not an alloy as they are not mixed at the

atomic level.

The linear optical properties of metal colloids. consisting of metal particles

suspended in a dielectnc matrix have been studied for a long time.3 , 4) The first models

aimitig at descr-bing these properties were developed at the turn of the centur-y.I. 0)

However, it was not until the 1980's that these materials were studies as nonlinear

optical materials. 7 , 8) Suh.,quently a lot or work has gone into investigating them. The

discovery that they exhibit a relatively large nand-edge rcsonant third-order nonlineanty

with relaxation times as short as 5ps has stimulated much of the current investigation '".

10. 11. 12, 13). The linear dimensions of the conducting particles in these composite

materials are of the order of a few nanometers and the carriers in them are confined in

all three directions. It is therefore customary to refer to them as quantum dots or zero

dimensional structures (14). This term is appropriate only when the dimensions of the

confinement are smaller than the mean free path of the carriers. Then the description of

the optical behaviour involves the energy eigenvalues and eigenfunctions resulting from

the carrier confinement.
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2.1 MATERIAL PREPARATION

The materials used in this study consisted of colloidal suspensions of differcnt

si/i'd i!nld particles in ionised water. 11'h diameters 0I 0he gold pa3ic 'S ran 1cd if',m

5()-40)()A. The sols arc labelled C(050A), K( 172A). 1%1(392A). N 395A). ()-3o5,,\),

P(52A). Q(47A). R(326A). Y(179A), Z(1l64A) and S(I84A). Sols K. M. N. 0. R. Y

and Z were prepared according to the method of Frens 5 - reduction of chloroauric

acid solution by Sodium citrate. which (wVhen successful) produces possibly the most

monodisperse form of divided metal known in the colloidal size regim1c.06 So)ls j) and
Q were svnthesised by alkaline tetrakis (hydronicthyl) phosphiium chloride rduction

of chloroauric acid.( 17) All the hydrosols-werc additionally concentrated by removal of

the solvent (water) before measurement of the nonlinear optical properties. For sols P

and Q, soduim citrate was added and the sols boiled for 15 minutes before

concentration. For all the sols, PVP,,, was added, to a concentration of about 2 e/mM

of metal atoms, before boiling down using a hot plate. either in a stream of nitrogen or

air.

All the chemicals used were analytical reagent grade, except tetrakis

(hydromethyl) phosphonium chloride which was only a general purpose reagent

(Fluka). Chloroauric acid was used as obtained from Johnson Matthey and contained

49.47%. metal, by weight. Poly(N-vinyl-2-pyrrolidone) at 40,(XX) molecular weight
(PVP40 ) and at 10.0(X) (PVP4k) were used, as supplied by Polysciences inc.. All

water used as the dispersion medium of the sols was distilled twice, latterly from an all-

glass apparatus.

2.2 MATERIAL CHARACTERISATION

The materials were characterised using Transmission Electron Microscopy

,TEM), linear UV-Visible absorption spectroscopy and a range of nonlinear optical

techniques. The following two subsections describe the linear characterisation methods,

i.e. TEM and UV-Visible absorption spectroscopy.

2.2.1 TRANSMISSION ELECTRON MICROSCOPY

Transmission electron microscopy is an extremely useful technique for

determining the size and shape of nanometric particles and is particularly attractive in

this case because of the high contrast afforded by the interface between the gold

inclusions and the surrounding water. Transmission electron microscopy was

performed using an Hitachi 1H70(W) transmission electron microscope operating at 100

8
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cmcein rat oi o I abt [ IIh douhlv dfiSliuled \%aicr aind a drop 01 ech'CI placed

lot severall seconds III contact wiha thin nion-perflorated carbon h'lim supported onl a

,.0 mini copper !Ird. The particle profiles" %vere iiieasnred accordine'o to thiril

kjliivaeicircCle dIiameter'IICII. an~d the i'eSn]Iltne (iLt'111UitInS of* diai1,ei111 esld I

their mecans and coefficients of' variation (standard deiaio of he disribtionII'M

'.j)Ipi e01ed a," a p)rci-ce -1 ntaerac non of' the mean).nfotuat v there arec cria In error'S

til helc~tionl Microscopy that are haid to eS1tiniate1

lIiaccnrIale mIaIufIcatI dion b the miCocpe

1i) Saiiipliig, error.

III) Artef~act of' siz~e introduced by linavine, conditions (extent of' dc'Ocu~s. sizeC of

objec~tive. aper-turcs etc.) and

iv) Measuring inaccuracies (particularly induced by estimating equivalent circle

diameters of* asphenical particles),

5% is a reasonable value for the error in the absolute aleof <d> (averagze diameter)

for monodisperse sols. Since most of thc errors above are systematic (apart form

sampling errors and inhomogcneities which can he partially estimated by examining

different micrographs and are less for monodisperse sols), comparisons between one

sol and another still hold. For polydisperse sols the abs-olute error Is greater.

Fivures 2.1 a-c show typical micrographs obtained. As is evident, the site

dsrbutilonl of' the particles is very narrow and they can be considered to be spherical to

aI hui-h dc,-ree of accuracy. Micrographs taken of( the same samples over a year later

Nhowed that they were free of aggregates and had the same characteristics ias the f'reshly

prepared sols.

2.2.2 UV-VISIBLE ABSORPTION SPECTROSCOPY

Ii V-Visible absorption spectroscopy is a standard technique for obtaining the

enierciaes of interband, intraband and other transitions in materials. Literally 100's of'

papers have been published on the linear optical properties of small metal particles. See.

f'or example ref'erences 3 and 4. The following section discusses, therefore, only briefly

the -ceneral leatures, of the linear absorhance spect-rum of colloidal gold.

Lilectric dipole absorption in Gold composite materials results in a peak inI the

11ible part of the absorption spectrum. called thec "surface plasnion resonance' peak.
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lIh" al)5•,1Pl ll iVs 01c' to) i COliccivc cl.CltoIi plaitilia oscillationl ( plasi.l]iui I hAi ,\

coupled to an external transverse electronmagnetic field through the particle S'urfaCCe.' 1

The plasnion consists of the conduction electrons of the metal and can be classically

described as a spherically hounded flee electron wave that is damped. The 111' hi

absorbed hy Sil'ver and (iold particles, on ithe oIlier hand, is due to iniCrHand

transitions. and is quite distinct from intrahand excitation of the plasnion rcsonancc in

the visible. The fact that this free electron part of the optical response is distinct froin

the bound electron and/or interband contribution and occurs in the visible, is why these

colloids exhibit such strong colotirs.

Depending upon the size of the inclusions, two different theories are uscd t)

explain the linear absorption spectra of the composite materials. The first of the two, tile

quasi-static or dipole approximation approach is valid when the size of the particle is

much smaller than the wavelength of light incident on it. This reduces the problem to

that of a particles immersed in a uniform, but time dependent, field. lThus retardation

can be neglected, and only dipole modes need to be considered. The quasi-static

approximation is reasonable for particles with dimensions < 30nm for X. = 530nm.

Within this approximation, features of the absorption spectrum, such as

position and width of the surface plasmon peak are size independent. There is,

however, a theory that the dielectric function of a small metal sphere is dependent upon

its size. This function is based on a classical model of a reduced electron mean free path

or a quantum-mechanical model that leads to discrete electron energy levels. Both

viewpoints predict that the imaginary part of the dielectric function will increase with

decreasing particle size, leading to a broadening of the surface-plasmon width lfr

smaller particles. The quantum mechanical model also predicts a slight blue shift in the

peak position of the plasmon resonance with decreasing particle size.

When the size of the inclusions becomes larger, retardation effects have to he

included. At this stage the "Mie theory" (5) is used to explain the various features of the

absorption spectrum. According to the Mie theory, the plasmon resonance broadens

ar.d the peak position red shifts with increasing particle sizes - similar to the quantum
mechanical predictions for small particles. The theory derives from a solution of'
Maxwell's equations, with boundary conditions defined such that the electric and
magnetic fields just outside the sphere are the same as those just inside , :.e. the
radiation must be continuous across the sphere boundarics. Using these boundary
conditions, it is possible to come up with an expression relating the absorption

cocfficient. a, to the wavelength of the exciting radiation. It is given by,

II



Pe,

where e and r, are the real and imaginary parts of the dielectric constant of the

inclusions, p is dteir volume fraction and r,' is the ( purely real ) dielectric constant of

die host dielectric.

Figures 2.2 and 2.3 show the linear absorhance spectrutm of some of the gold

colloidal samples in a spectrophotometer cell of padt length I mim.

• f ------•Saunpllc M. 392A

- -.---- Sunplc N. 395A
•" 0.8

• 0.6
-.0

< 0.4

0E 0.2
z

0

300 400 500 600 700 800 900
Wavelength (nm)

Figure 2.2: .inear absorbance spectrum of two sunilarly sized gold colloids
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Figure 2.3 linear absorbance spectrnu ot two pold Colloids of comiplelely
diffcrent sizcs

As is evident from the figures. it is difficult to come to any definite conclusion

regarding the relationship between particle size and width of the absorption band and

peak position of the plasmon resonance. It is probable that the discrepancies are at least

partially due to the fact that most theoretical models are based on idealised samples i.e.

an assembly of non-interacting spheres of the same size. In reality, of course, this is

not the case. Unlike silver particles which have a sharp surface-plasmon resonance, the

resonance in gold is broad because of the relatively large bulk value of the imaginary
part of the dielectric function, E".19) In addition, there is the onset of an interhand

transition in gold near the plasmon resonance that leads to large absorption in the blue

wing of the absorhance spectrum. The distribution of particle sizes and shapes,•20) the

number of lattice defects (21) and the large value of the bulk dielectric constant. c, will

tend to mask changes in the linear absorbance spectra that are due to a size dependent
E, .The host matrix also plays an important role in determining the width and the peak

position of the surface plasmon peak.

2.3 SIZE EFFECTS

Small metal particles almost never have plasmon peaks as sharp as those

predicted by the simple Mie theory.(22) The reason for this is that the fundamental

electronic properties of small metal particles differ from those of the bulk. i.e., small

metal particles are intrinsically different from a similar volume of bulk metal, because it

is the near infinite continuous lattice of metals that defines their electronic structure.

This is known as the size effect.(4. 23. 24) It is an intrinsic effect, due to the Changue in

13
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prlO 'trItles with pirucle diallmcter ( as described by the Niic theorv I .1i C1'.ItIl.¥1C C leffet

defined hy the geometry of the interaction of light with a sphere. the nature of the metal

remainingt unchanged.

lhe si/+c effect affects the inclusions in two distinct ,.v,. [irstlv. tihe

delocalized conduction electrons of the bulk find themselves, In the inclusions.

confined to reinons that are much smaller than their delocalization lengths. (For a1n

unconfined metal, delocalitation lengths extend over several unit cells). lhis results in

discrete optical resonance's whose position, oscillator slrengths and dynamics depend

on tile extension of thie artificial confinement. This effect is known as the Quantumll

confinement effect ( it is quantum mechanical in nature ). So basically, it relates to the

alternations in the energy structure of the material and comes into play when the

physical dimensions of the material become comparable with the characteristic lengths

that govern quantum mechanical processes.

"The second effect that stems from the small size of the particles is that the

electric field that acts on and polarises them is vastly different from the external

"macroscopic electric field applied to the composite material. This is due not only to the

particle size but also because their dielectric constant is completely different from that of

the surrounding matrix. This effect is known as the dielectric confuiement effect.

Quantum and dielectric confinement effects will be discussed in more detail in

the following two subsections. They can be used to enhance the nonlinear response of

the composite material and are particularly sensitive in the optical frequency range.

2.3.1 QUANTUM CONFINEMENT :

Quantum confinement in small metal particles was discussed for the first time in

a paper by Frolich published in 1937.(25) lie showed that metalic matter in the form of

sufficiently small grains behaves qualitatively differently from the bulk metal. The basis

of his treatment of the electronic properties of these particles was the fact that the

spacing between adjacent energy levels increases with decreasing particle size. He

assumed that for a given particle size, the spacing between adjacent levels is constant

and independent of energy. The theory is still basically unchanged except that the

artificial concept of equally spaced energy levels is removed and a number of more

realistic assumptions arm introduced.

Metal nanocrystals occupy a position intermediate between a molecule and the

bulk crystal. Therefore, the choice of a model that accounts for the coexistence of

14
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•ton,,. the m>ost usual approach is the one using molecular orbitals, hut this becomes

enormously complicated as the number of atoms is increased. On the other hand. the

description is greatly simplified for an infinitely extended periodic systern where thie

hIchaviour of an electron can be determined by studying the appropriate Schrbdingcr

equation which is given by

Itt(r)=(- -- 2 _L + V(,') -'(,') = .l"(r) (2.2)

where 11(r) is the crystal potential experienced by the electron of mass it , and 'P(r)

and E are, respectively, the state function, and energy of this clectron.(26)

Because the ions in a perfect crystal are arranged in a regular perfect array, the

potential V(r) has the periodicity of the underlying Bravais lattice, i.e.

V(r + R) = V(r) (2.3)

for all Bravais lattice vectors R.

The problem of an electron in a solid is, in principle, a many-electron problem

for the full Hamiltonian of the solid contains not only the one-electron potentials

describing the interactions of the electron with the atomic nuclei, but also pair potentials

describing the electron-electron interactions. In the independent electron approximation

these interactions are represented by an effective one-electron potential V(r).

One is thus led to examine general properties of the Schrddinger equation for a

sinle electron. i.e., equation 2.2.

Independent electrons, each of which obeys a one-electron Schrddiner

equation with a periodic potential, are known as Bloch electrons (26) ( as opposed to

free electrons to which Bloch electrons reduce when the periodic potential is identically

zero).

According to the "Bloch theorem", the eigenstates 'P of the one-electron

Hamiltonian, above, can he chosen to have the form of a plane wave times a function

with the periodicity of the Bravais lattice as follows,

'Pl,(r) = e" 'U.A(r)

15
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encrg,, -(k) is a reciprocal space periodic function i.. L*(k +A')= -L'(k ) where K

is any reciprocal lattice vector and k is the wave vector that labels the electron state in

the band n within the first Brillouin zone.

For an infinite crystal, equation 2.4 has the form of a Irce wave. If. however,

the pcriodicity iIs broken te. due to crystal honlndariS or1 defectS ) then one has to

represent the electron motion as a wave packet of BlFoch states. If the defect

Clncom11passes several unit cells, UI remains essentallv tLnaffected. and close to k - ()

tlle Call Wlite.

t = F,(r)U•(r) (2.5)

Where F (r) is the envelope function that has to he solved for.

Metals are characterised by a single half-filled hand up to the Fermi level EF

with electron and hole states on either side of it. The electron and hole wave functions

will thus be of the form.

'P(rC'rh) = F(rerh)Ue(rer*)Uh(rerh) (2.6)

where U, and U. are the cell periodic part of the Bloch hand states for the conduction

(electron) and valence (holes) bands respectively at k = 0. FAuation 2.2 can therefore

he rewritten as.

- V+ - -V+" + V + V . F(,-, )E= F( ,,,)
S 2 i2.7)

Where. V•; = Electron - hole coulomb interaction. V,, = residual electron and hole

coulomb exchange interactions, which are lumped together under the term many body
effects, and V5 = Electron(hole) - impurity interaction potential.

Vh. Vm,,, and V, collectively constitute V(r). If. in addition to the above

potentials, the electrons and holes find themselves confined to lengths less than their

delocalization lengths, ( e.g., in crystallites the motion of the charged particles is

hindered by the interface with the dielectric host matrix ) then an extra potential

describine the confinement has to he introduced into the one-electron Ilamiltonian as

follows.
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V,? + V71, + +€ V, +. i (,
- j (2.8)

The confincment potcntial IV can he visualised as an infinite spherical potential well.

t.,.. 1)t = () for r < a and lV = - for r > a ( a is tie radius of the crystallite ).

The above equation can. in general. only he solved with numerical methods and

cven .•o with limited usefulness because of the uncertainties in the definitions and

determination of the different potential lerms. I lowever, the essential features of' the

quantuni confinement can he quantitatively accounted (0- if some simple analytical

forms for these potentials arc introduced, and in addition their relative strcngths arc

properly accounted for.

The relative impact of the different potential terms depends on the extension of

the confinement with respect to the characteristic lengths that are associated with these

potential terms and determine their respective strengths. Whenever the confinement

extension is larger than any of these lengths, the energy spectrum is determined by the

corresponding potential term while the confinement only acts as a perturbation. If on

the other hand, the confinement extension is less than these lengths, the roles are

reversed and the confinement suppresses the different potential terms and imposes its

own spectral distribution.(12, 13)

In the case of metals, it turns out that the confinement potential W completely

dominates all other potentials. The reason for this is that the half filled band in metals.
which is usually formed with s- and p- orbitals, can, for most purposes, be replaced by

an equivalent pair of parabolic bands, situated on either side of the Fermi level, that are

mirror images of each other and touch at k = 0. The wave vector dependent dielectric
constant c(k) is infinite at k = 0, leading to the potentials V,,, Vmb, and V, being

completely screened to within a distance rF = YkF' which is of the order of a few

angstroms, i.e. roughly equal to the lattice constant- Thus electrons and holes behave as
free non-interacting particles over any distance in the perfect crystal.

The one-electron periodic Hamiltonian can therefore be replaced by the free

electron and hole Hamiltonian, leading to the following equation

V-_-'IT+ W i(rý,rh)= EF(rý,rj
7n2.,V' 2mn Ije!,e h

i: '(2.9)
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the free clection I lamiltonian is replaced by a discrete energy spcctrim. nanielv one of

quantuml confined levels whose spacing depends on the extClt of the C01nfil'neIflnt and

c'n accordiann Ihc modified as desired.

In spherical co-ordinates, equation 2.9 can be solved to give

,,Y' j, ( a,
F~r(I~ L j 114 1(X,)i -}'"O) 021()

(2.11))
& Y/, ':(0.0) 12 )

using the boundary condition F(r = a) = O.

j. is the spherical bessel function of order 1, a•, is its nth zero and Y,(OO) are the

spherical harmonics. "lhe energy of the state given by quantum numbers n, I and m is,

E,, =(oE)2 ,E (2.12)

where E. = 2 is the ground state energy.

2.3.2 DIELECTRIC CONFINEMENT

Despite their disparity, all composite materials that are formed by uniformly

dispersed metal or semiconductor crystallites in a liquid or solid transparent dielectric

share an important feature that has an essential impact on their properties in the optical

frequency range: because the size of the crystallites is much smaller than the incident

wavelength and their dielectric constant is very different from that of the surrounding

transparent dielectric, the electric field that acts on and polarises the charges of these

crystaflites can be completely different from the macroscopic Maxwell field. This effect

is known as the dielectric confinement effecL

2.3.2.1 LINEAR REGIME :

In general, the metallic crystalites embedded in the dielectric are not completely

uniform either in size or in shape. However, in order to explain the essential features of

dielectric confinement several features of the composite material can be considerably

simplified. Firstly, li can be assumed that the surrounding host dielectric, liquid or
solid, is an ideal isotropic dielectric of dielectric constant rh with the metal particles
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assurncd to he spherical in shape. with a diameter d 2a that is much smaller than the

optical wavclength X.

'./ , h '
/

/ / / / ,

Figure 2.4 A small sphere of diclec mric consuint r. cinemdded in a matrix of
dielectric constant r,.

In the linear regime the relevant optical coefficient of such a crystallite or
inclusion, of volume V, is the polarizability a,, and its dielectric constant c, can he

defined by the relation.

I = 1+4 irZ = I + 4ir av (2.13)
V

where %•' is the linear susceptibility.

The dielectric constant is expected to be a function of the particle size. Its limit for large

particles is the bulk value L-,.

Secondly, if it is assumed that the volume density of the particles in the

dielectric, p, is so small that the interaction of the induced dipole moments on the

particles can be ignored, then an effective dielectric constant C for the composite

medium can be introduced, whose relation to E, e, and p is given by the Maxwell-

Garnet expression.(6)

C - Eh - , (2.14)
E+ 2 "h r, + 2Eh

This relation is a straightforward consequence of the Clausius-Mossotti

approximation for the local field corrections for spherical polarizable particles (26).For

p I 1 it reduces to.
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Equation 2.14 can he derived from Lorentiz-lorenz local field argumnents as

Consider a collection of molecules subjected to an external electric field, L'. The

dipole moment induced in any one of the molecules is given by,

/1 (XL(2.10)

wherc E,0 is the Lorentz local field, which consists of the external field and the field

due to the other molecules, and a is the linear polarizability.

-,•,=wE+ 4E r -P (2.17)

3

and P is the induced polarisation.

If the number of molecules = N, then,

(NE. = NoF,,,,, Na(k+-3-P) (2.18)

or

3= Na /• m•(2.19)

I-Na1 - 4_._r N.t

3

where.

- Na (2.20)

1- 4-. Na
3

Equation 2.20 can be rewritten as,

C(' - I 4;r
-- = 4Na (2.21)
E + 2 3

where i") is defined as,
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1 +4lrx (.1.22)

Ekquation 2.2 1 is the Lorenti-Lorenz law. It can alternatively he stated as.

, )A. (2.23)

E +,., 2): (2.24)

wi + 2 is called the local field enhancement factor.

These arguments can also be applied to a composite material in the presence of a
uniform clectric field k.(28, 29, 30) The polarisation induced in the material due to the

external E field is given by,

P = ZXE + P (2.25)

where Xh is the susceptibility of the host matrix and P' is the additional polarisation

due to the inclusions.

' = = Neha, tE (2.26)

p2 is the dipole moment of the inclusions, a, = a' is their polarizahility and

Et is the local field, i.e.. the field in their vicinity.

Just as in the derivation of the Lorentz-Lorenz law, one can write,

- - 41r -,
E, = E+-P (2.27)

3ch

which implies that.

/ = Nhar, F (2.28)

i--rNa,

3

Combining equations 2.25 and 2.28 one gets,
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V\'+/'x :' , f. +1 .. '•
S- 4 rNa,

S1.!' the dcli ition. i- I + 4)rt T , for the dielectric constant. eq ation k 2.3() can be

Aternativety expressed as

r -G' =p| -•(2.31)

r + 2Le,, + 2j )
which is the same as equation 2.14.

c' is complex. c, = c, + i4e, and frequency dependent. It can he seen that the
expression in equation 2.31 shows an enhancement close to the frequency to,, such

that,

,(o.,) + 2E =0 (2.32)

which is the condition for the surface excitation or surface plasmon resonance
frequency. The width of this resonance is determined by C, .The absorption coefficient

as a function of wavelength can easily he calculated from equation 2.3 1. It is given by,

181r - (2.3E3a = c Q.33t+ (+,+2t;) + 2 ,

which is the same as the result that is obtained using the Mie theory to calculate the

opuical constants of composite materials.

Combining equations 2.27, 2.28 and 2.31 it is possible to derive an explicit
relation between the local field experienced by the inclusions and the external

macroscopic which is given by,

- v+ 2e, -E, = -- + E• (2.34)
3c~h

Similarly, the field inside the inclusions is related to the external field through.
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r+ 2 c

c, + 2c

Combining equations 2.34 and 2.35 the field inside the inclusions can he expressed in

WIrhS of h0e local field as,

where f' is called the local field enhancement factor. lAquation 2.36 constitutes tie

main result of this section.

2.3.2.2 NONLINEAR REGIME

In the presence of an intense electric field the polarisation induced in the

crystallites may be written as,

AP = p(i) + p(2) + p , (2.37)

where [(") with n>l is the nonlinear polarisation term of order n. In the case of an

isotropic composite with random distribution of inclusions p(2,)

p() = X11)E, and

p(3) = 1z3)EEE,

where r(l) and X(3) are the linear and third order effective susceptibilities of the

composite material.

The term P') is related to third order effects, the most important of which is the

intensity-dependent refractive index or the optical Kerr effect. This effect is involved in

a wide variety of important processes, including self-focusing of a laser beam,( 3 1) self-

phase and frequency modulation,(32) "soliton" pulse propagation,( 33) and "optical phase

conjugation".( 3 4) It can be described as an optically induced change of the optical

dielectric constant, i.e.

&, = l21rZ('1JE(4o))j (2.38)

This change of c contains contributions from both the surrounding dielectric and the

embedded crystallites, denoted by &Sh and 5e, respectively. Close to the surface

plasmon resonance frequency the contribution from the surrounding dielectric is
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the dielectric constLant of the iiclusionls will rcsult in a chaiige 1W ii'. the dielectric

constant of the composite given by.

S 3. ' "•. 2, , f. , (2.39)

The above equation is obtained by differentiating Cquation 2.15.

If the third order suscepuhility relevant to the internal field within inclusions is
designated by X 3)then by analogy to equation 2.38.

45e, = 12 ZI(3) IEMJ[ (2.40)

Substituting for 8e, in equation 2.39 gives

& f = = 12pn'1fij) f,"2Z 1J" (2.41)

and,

=€1 olifx' (2.42)

Thus it can be seen that the nonlinearity can be enhanced by an amount equal to

the fourth power of the local field factor, close to the surface plasmnon resonance

frequency. As one moves away from this resonance frequency, the local field factor

approaches unity. At this stage dielectric confinement plays no role in the enhancement

of the nonlinearity.

Another important point to be noted in equation 2.42 is that the macroscopic
susceptibility X () can also be enhanced by the intrinsic quantum confinement mediated
enhancement of the susceptibility of the inclusions, X"3).
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2.4 NONLINEAR OPTICAL PROPERTIES

Tlle third order susceptibility of the inclusions. X: 3', can he calculated using the

,,Luantumn mechanical expression in equation 1.2 which is repeated here for conv,'enience.

Nf'4

(3) Ne (a)X
Ve 3!t h'Ic

r nu"] r~n[ " 4- 47 similar terms

S- -, -, a),-,• -,, , ) j (2.43)

In order to calculate the susceptibility, the matrix elements of the transition dipoie

moment, r, must be known. They can be calculated using the relation

[H,r]=-t p where p is the momentum operator and ir=

The radial part of r between two states r (quantum numbers n, 1) and s (quantum

numbers n', 1+1) is given by,

J r 2 drR, rR.,,1 + (2.44)
0

Substituting for Rn, from equation 2.11. changing the integration variable from r to
r- = x and integrating by parts gives,
(I

fr 2 drR,,r R .,+ =- 4a ra ,VI, a = 4aE o ( E 4 E ,1+1). 12

o (al _ a•l.,) (E.,+I - En-2.

Therefore the radial part of the ir matrix element is

itz E, - E r (2.46)

With these transition dipole moment elements it is possible to calculate the third order

susceptibility, X('), of the composite materials using the expression in equadon 2.43. If

the experiments are performed in the vicinity of a resonance, only a few of the elemenls

are siunificant.
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I ItNI cotk i uti-toL . called OhW intrahatld contriibuttio tI.,, iCaused Ibv tradnsitionst within the

s-p conduction hand. It is mainly imaginary and negative and shows a stron! si,,e

dependence. lh.is iS to bI . expected since the hi1hiyV de localAisCd electrorns tn the

",0,)ndutction band otl , ld he ý-.rcaly alfcoted h1 a (I cre.:tse M the'ir dclocalisation Icn,.ths

d U C t I q uan tuLi conIinement. The second contribution, called the interhand

contributi on. is due to transitions I llon the (I - valence, hand to the s-p conduction hand.

It is also mainly i mlgilnarv and nea•ti\ye hut is independent of the sie of the inclusin11s.

There are two main reasons for this. lirstlv, the d - hand clectrons have a inuch greater

eflective mass than free electrons. Secondly they are already localised and are

consequetItlV unaffected by the quantum confinement. The last contribution. called the

hot electron contribution, arises due to a change in the Fermi-Dirac distribution of

electrons, about the Fermi level, caused by their increase in temperature on absorbing

energy in a resonant process. This contribution is imaginary, like the first two, but it is

positive. In the chapters following this one, several experiments are described which
were undertaken in order evaluate the magnitude of the different contributions to X,3)

and to ascertain which one, if any, was the dominant one.

-, The next three sections of this chapter are devoted to a detailed discussion of the

three different contributions.

2.4.1 THE INTRABAND CONTRIBUTION

Equation 2.43 for the calculation of X"( in terms of the transition dipole

moment matrix elements contains 48 terms. Keeping only those terms for which one of
the factors in the denominator is equal to i / T1, where T1 is the lifetime of the states.

the number of terms reduces to 32: 16 different terms, each appearing twice.

Considering the different components of the X, ) tensor, the terms can be

divided into three groups eight terms in , four terms in Z2"), and four terms in

` such that.

x • - x + ) (2.47a)

-t,0 2(c, Z + (3)+ ' ,) (2.47h)

X., = xi. r = +r+,+ 3,+ .. ) (2.470

where ', i,, Ia CrtTrctive inultiplicativC factor When (ijkl) t (vv-u ) and
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For a two level system consisting) o' initial and final states, r and s, X;') is given hr.

3 T. to (I)-o-TC' -)+T72

(2.49)
(Wr + ,,) + iTC' + (,) + r2

where V is the volume of the crystallite, T, is the dephasing time, A is an angular

form factor, 7rr, is defined by equation 2.46 and Wor = (E, - E,), setting h = I for

convenience.

There are two main contributions to x,3). The first one arises when

o) = E, - E,, and the second one when E, = Er. In the first case it is only necessary to

consider the first term in equation 2.49 since its contribution dominates that of the

second term. In the second case, both terms need to be considered. However, it turns

out that the overall contribution to Z(3) in this case is much less than the in first case

and it can be safely ignored.

Substituting for r, from equation 2.46, equation 2.49 can he rewritten as,

3) 2v 1 1A.(4aeE0 )'y (_EE) x

3 T, (W ... (E-E,)4

{(E, -Er. -o) -77I2)[(E, Er6))2 +7T211(250

for the case when wo, = (E, - E,). The summation in the above equation can be

replaced by an integral to give,
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z -- -A.. I4,L,,0 ) J" f(E),f XL-
3 1. (0 o "EJ 2AE

I I(2. I)
(E-1) (1 E-,(o - iT')[(E - E-,o0 + 4-iF•J,2.]

where uz -)1 is the density ,1 states. In the second integral. the dcnsitv I lakes Into

2AE
aCcount the fact dhat the I number of hie s state is determined by the I number of the r

slate and is of diflfrcnt panty.

Equation 2.51 can be solved to give,

I/ . (4,- .4 4
4 - T, T, EýE;gi(v) (2.52)

* ()

with v - and g,(v)=- j'x5 '.(x + v)3LXr.

The quantum mechanical expressions for ;r,) and Z•3) are given by,

,, T ,. lr,, 12 12 _,,l 12

3 T ' - -)' +

+(0 +,+ir')[(c , +t) + '.-J (2.53)

and

AvT { -w 2 2

T3 . r.s.u )[( +,CO), +o

(W., + (f + W)2 + T22] (2.54)
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The only important contribution to X2 is when (o,, and (o, arC close to w). In this
case it is only necessary to consider the first term of equation 2.53. and hy proceeding
in the same way as for 7, , the final result obtained is.

z i 1 AT (4ae) "-E'ý"2 7/2

" 181r E;' 9Eg2(V) (2.55)

%vi di

X 2) (v)= -- x2(x+ v) "(x+2v)12dr (2.56)
Vl-

Similarly, for X(3), the only important contribution is when co, and (Or. are close to
0o, which means that the first term in equation 2.54 can he ignored, giving,

( 3) V_ T (4ae)4  
7/2

X3 181r T (0)7 E:o E; 93 (V) (2.57)

with

V1
9(V) / X+Vl/2( )/ d (2.58)

where x. = max(v, I - v).

Combining equations 2.47a, 2.52, 2.55 and 2.57 yields,

1/2

XX?" = 12x 3{l--T.{2 EL. g,(v) J (2.59)

2;r,3) a(2.60)

where,

a. = T2(3Ef IJV (2.61)92 (V) + g 3(V)

or. substituting for 7ý3),
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.4'u : ).lhT J. N .- L :.€( v)Il -- j (2.o_)
• J ( I II/ (w• '~ lift

tI.144i1 , I ______ .!:,,' ( I ,

- N .~ v 'I -- (2.03)

in SI units.

When a -- (1, U-

W hen a << lo, X,. "L111
(3) 0«

When a>> ao, ,-,. (I

For the case of gold, with Ef = 5.5ev and setting T2 = 20fs, a. 136A.

The magnitude of ;Y'" can be approximated by inserting suitable values for the

physical parameters in equation 2.63 above. Setting T, = 0.5ps and (o = 3.55x10'5s-'

yields, Ixr("I = 4.23x10-8m' V- 2 .

2.4.2 THE INTERBAND CONTRIBUTION

2.4.2.1 LINEAR REGIME :

It is well known that the generation of an optical plasma, due to interband

transitions, can result in a strong modification of the dielectric function c(O)) in a

semiconductor.( 36) The same argument can be applied to the metallic crvstallites in the

composite material. According to the Drude theory of metals.( 37. 38ý the complex

dielectric constant of a free electron metal, to a first approximation, is given by

(O)) =i(2.64)

4~2

where o= is the plasma frequency, with n, e and in being the electronic

concentration, charge and mass respectively.

In the case of alkali metals, there is a striking correspondence between theory

and experiment, in this respect. In other metals, however, different contributions to the

dielectric constant compete quite substantially with the Drude term.
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itrahand transitions within the s - p conduction hand and the other due to interband

transitions from the d - valence hand to the s - p conduction hand.

I-, (a)) = C,,,+ r",f,,. (2.0'5)

The lrce electron intraband term corresponds to the Dlrtdc dielectric constInt/. '..

P (2.00)(

where rf. is the mean collision time for (ree electrons taking the surface into account.

In the large sphere limit rff reduces to T, / 2.

The imaginary part of £m,,,, is dependent on the joint density of states involved

in the transition and on the momentum operator between the states. It is given by,

"Ling, f3m2 .4 2 ,f(k)(l- f, (k))J(E (k) -E,(k) -o)) (2.67)

P11 (k) is the matrix element of the momentum operator between states corresponding the

quasi momentum hik, f, and f, are the occupation numbers and E£ and E, arc the

energies of the initial and final levels. Near the surface plasma resonance frequency, the

sum over the indices i and j is dominated by one term whose initial state is the top of

the valence band and final state is the conduction band. Since the integral in k space is

dominated by the viciniy of the X point of the Brillouin zone where the band gap is
1.7eV, (See ligure 2.5) the dependence of Pq (k) is weak and it can be approximated to

be a constant P. Equation 2.67 can then be rewritten as,

,"42e2 I P1J(o)) (2.68)

3m20o

and the corresponding absorption coefficient a(wo) is given by,

0)
o(co) = ° (2.69)

ni(c)cinr

J(w) is the joint density of states. In thermal equilibrium the contribution to the

electronic density from electrons in the nth hand with wave vectors in the infinitesimal

volume element dk of k space is given by the Fermi distribution
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f(T) - (2.70)

+ -T

with 6E = E. -(E1' + h)), where 1•, is tihe d-hand energy. k,, is 1oltzmanns constant

and T is tie temperature.

Thie loint density of states is therefore given by,

J(0)= Xf- - (k)(l - J,(k))s(:, (k) - E(k) - hIo) (2.71)

NONLINEAR REGIME

If the excitation frequency used is resonant with a particular interband
transition. the main contribution to x") will consist of the contribution of the two levels

involved in that transition. Since it is resonant, it will be mostly imaginary with the

imaginary part given by (8, 35) ???

(3) 4AT e 4  d 3,k)[
IM Z -Z P (k) -

.2/

Where T, and T2 are the energy lifetime and dephasing time corresponding to the two

level system and A is an angular form factor = 1/ 5.

Since only contributions from the X point of the Brillouin zone are relevant to
the integral in equation 2.72, by analogy to equation 2.68, equation 2.72 can be
rewritten as,

lmZ'a, 3 AT.T2M4=04 (2.73)

The product J(w)1P12 can be obtained from the value of cinger which in turn can be

obtained by subtracting the Drude term from the overall dielectric constant. 1P1
2 is given

by the expression (40)

(Gb (2.74)
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In order to obtain the result in equation 2.76. the values for T, and /', were

approximated to be 2x10-Y" and 2x0lW' 4 respectively.(8 )

This contribution to ;r") is size independent down to very small sizes. The

reason for this is that the quantum size effect should he unobservahle for the d - levels

because of their large effective masses and the fact that the electrons already have a

localised character. The calculation of the interband contribution is affected by s-p band

only for very small spheres with sizes less than 2.5nm.( 4 1, 42)

Thus, in this case, the contribution to Z") is approximately an order of

magnitude greater than that due to intraband transitions.

2.4.3 THE HOT ELECTRON CONTRIBUTION

The third mechanism contributing to the susceptibility of the inclusions is the

hot electron contribution. It results from the modification of the population of the

electron states, the Fermi-Dirac distribution, caused by the elevation of their

temperatures subsequent to the absorption of photons in the resonant process, but

before the heat is released to the lattice of the crystallite, this leads to a contribution to

X") that is positive, imaginary and size independent.(9, 10. 12. 13)

Because the specific heat of the conduction electrons is weak, on the absorption

of photons they can heat up to a temperature that is much higher than that of the lattice.

It has been shown that it takes a few ps for these hot electrons to come back into

thermal equilibrium with the lattice.343, 44) During this time, their Fermi-Dirac

distribution gets modified resulting in part of the one-electron levels below the Fermi

level being emptied and part of the one-electron levels above the Fermi level being

,iccupied. This leads to a modification of the dielectric constant of the inclusions and

consequently contributes it) the overall susceptibility.
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frequency is ver" close to the band gap which exists in gold near the l1 point ol the

Brillouin zone t hwc = 2.4eV) and therefore this effect is 'verv strong. The relevant part

(1 the total dielectric function is called i-, and its Imaginnary part is given by,(10)

C' .(I - tI(T/)) (2.77)

where f(T) is the occupation number of [K conduction electrons and C is a

temperature independent constant.

The change in the dielectric function as a function of temperature is obtained hy

differentiating equation 2.77:

_ SE ex( -SE~f (2.78)
dT kTT k1T-

Setting Ifhc to 2.43 eV and C = 12 leads to the following estimate,

dE"- '- = 2.9x1T 3-K-' (2.79)
dT

At room temperature f(T) -> I which implies that E,. --> 0 . If the temperature

of the conduction electrons changes, then the change in e, result-s in a change in the

overall dielectric constant of the inclusions, c, given by,

S5,= E.. 5ST (2.80)dT

where ST is the change in temperature of the conduction electrons. It is related to the

energy absorbed E•,,, and the specific heat g7, of the electrons and can be calculated

using,

ST = (2.81)
YT

The energy absorbed per unit volume of metal by the free electrons is,

Eb, =IfXIE-r - (2.82)
nc
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[tc dielectric cOnlstanlt. -,, Is the tinIc c11istadll for I hc cool ing of tihe clectrons, /, is tic

incidcnt lascr energy and n is the refractive indcx of the composite Ithecrial.

Fi'e quanl ty 1',, r,, M C( e Luatioll 2.X2 IN !i, Nvcn I),

where (o IS the plasma l-Cqucncy anid LtS Ccqual to the nuintbCr of collisions

an electron has to undergo in order to transfer its excess energy, either to the metallic

particle phonons or the phonons of the surrounding dielectric through the interface. 1f

the excess energy is 2.33 eV (liN) and cach collision, on average, transfers 0.02eV.

then the total number of collisions rcquired is approximately 120.03) Taking
(or - .49xlO .s-' gives -i, 1.3x1()

Combining equations 2.79, 2.,0, 2.IS and 2.82 gives an expression for the

change in the dielectric constant of the inclusions which is related to their susceptibility:

de . 2- ZOo o 241r2

1 =d'If rel) 1 (2.84)
dT iV ncyF 241r'r

- 24 I z"fII'(I,
tic

where

13),= d v"•r 0  I
X f(2.86)
dT )Iy -4r'4

Using y = 66Jm-3 K-2 ,(2 6 ) gives

(3) I I 0)"esu = 1.5xl 10-'(n V -" (2.87)

depending on the wavelength of the exciting radiation.

The contribution is mainly imaginary. ('ontrarv to the first two, its sign is positive.

Also, it is an order of magnitude greater than thle interhand contribution which is, In

turn. an order of magnitude .grcater than the intraband contribution.
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CONCLUSIONS

Frorn this chapter the obvious conclusion would be that in an experimental

situation, the hot electron contribution would be the dominant one followed by the

interhand and intraband contributions, in that order.

This, however, is not strictly true. The numbers obtained are only approximate

as a lot of the parameters in the equations are not known to a sufficient degree of

accuracy and do not merit such a statement. It should be possible, though, to determine

experimentally, from the sign and the response time ol the susceptibility, the physical

mechanism responsible lor the process.

The following four chapters describe different experimental techniques for

determining X (3) and, hopefully, the physics underlying it.
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Various experimental techniques are known for determining the real and

inlaginary parts of tlhe third order suisceptibility X' ', discussed in chapter I. This

chapter focuses on a mcthod for cvaluating these quantities in a nonlinear material hy

measuring, as a futnction of the incident li ht, the material's absorption and the phase

change induced by i01.. 2.- ) A completely linear material will show no change in

absorption with intensity; materials that are "two photon ( or multiphoton ) absorbers"

show an increase in absorption with increasing intensity and materials that arc
"saturable absorbers" show a decrease in absorption widt increasing intensity.

EXPERIMENTAL TECHNIQUE

The experimental set-up is shown in figure 3.1. Using a Gaussian laser beam in

tight-focus geometry, the transmittance of the nonlinear medium is measured, in the far

field, as a function of its position Z, measured with respect to the focal plane of the

lens. Such a trace is expected to be symmetric with respect to thc focus, where there is

either a minimum transmittance (e.g. multiphoton absorption) or a maximum

transmittance (e.g. saturation of absorption). The coefficients of nonlinear absorption

and hence the imaginary part of Z"' can be easily calculated from such a curve.

If an aperture is placed in front of the photodiode, it is possible to detect

contributions from the real part of the susceptibility as well. This contribution causes

the beam to he focused or defocused ( depending on the sign of the nonlinearity ) as it

passes through the sample. Focusing of the beam, when the sample is on the positive

side of the focal plane, causes increased aperture transmittance, while defocusing has

the converse effect. If the sample is on the negative side of the focal plane, the situation

is reversed. By subtracting the effect of the imaginary component from this curve ( by

using the first trace ) it is possible to separately evaluate both the components of the

nonlinear susceptibility.(4 , 5)

The laser system used was a tuneable PRA Nitrogen pumped dye laser with

5O)ps pulses operating at a repetition rate of 5 liz. The experiments were performed at

two different wavelengths of 516nm and 522nm, which lie very close to the surface

plasmon resonance frequency. The dye used was Coumarin 485. The output energy
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UItror tile lascr at these wavelcnitis was • 4(ojJ and the hea•. was i ocused down it a

spot size of : 40jim giving a peak intensity of the order of 10s W / cm'.

Focussingi I.cns

Si lIhotodiodc

Nitrogen Puipcd
I)Dc Laser

Sample

Motonsed 'I'mnslation Stage

Figure 3.1 Experimental Set-up for Intensity I)ependent Absorption
Measurements

GENERAL THEORY

The description of resonant optical processes is greatly simplified by restricting

attention to the dominant resonant transition. The most widely used description is based

on a model of a two level atom. If there is a distribution of transition frequencies

between the levels the system is considered to be inhomogenously broadened.

Saturated absorption spectroscopy is a useful tool for determining whether a material

can be described by homogenous or inhomogenous saturation because the dependence

of the absorption coefficient on intensity is different in both cases.(6 ) If the material can

be described as a homogeneously broadened two level system then the variation of the

absorption coefficient with intensity is given by:

a(o,) = a w
/

1+-
1sa1 (3.1)

where ao(wo), I and /,a, are the unsaturated absorption coefficient, the input intensity

and the saturation intensity respectively.

For extremely inhomogenously broadened systems the expression for the

absorption coefficient is modified to read:

+ 
)112 (l +-•-)(3.2)
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at largt" Intcn.,sitics because tile signal can draw enurgy foin a;n increa.sinp.ly v ý%ider ianee

of packets as the signal intensity increases.

Ii'quations 3. I and 3.2 hold, provided that the contribution from the real part of

the susceptibility can be ignored. i.e., there should be no aperture present i I rott c i, 0

.signal photodiode.

[he experiments. with no aperture, were pertfOnied on It dil-erent samples and

the resultant data was fitted by a nonlinear least squares fit using both equations 3. 1 and
3.2. with / being the only fit parameter. In all the cases. equation 3.2 (i.e. the

equation for inhomogenously broadened systems ) gave a far superior lit. A typical

result is shown in figure 3.2. The sample in the figure is an l8nm colloid dispersed in

deionised water.

0.5

0 Expeninental data
\ FHt

E 0.45 \

S 0.4

&0
a 0.4

8 0

S0.30

0 00
< 0.3 " °

0.25 x 107

0 20 40 0) 5 100
Intensity tW/cm 2)

Figure 3.2 : Absorption Coefficient Vs Laser intensity. , 522nni

From the least squares fit it is possible to determine 1,,, which is then used in the

equation

(m (3) = EoCr__ox
2 ir.,,, (3 .3 )

to calculate the imaginary part of the third order susceptibility.

1,,. n0 and a,, arc the permittivity of free space, the linear index of trefraction and the

low intensity absorption coefficient of the sample respectively.
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For nonmagnetic, centrosymmetric materials, the polarisation induced by the incidence

0f an intense lieht source is .iven bv

P = t:o(X''' "YC')E'E)E (3.4)

S)sing, this expression in the equation for tie displacement vector

D = t '0E+ P (3.5)

we get

D = vo (I +,Z") + Z(')E. E)E=o, + E,)E (3.6)

where e, = I + Z(1) and r,_ = Z( )E.E, are the linear and nonlinear parts of the

permittivity of the medium.

The refractive index of the material, n, will also undergo a change due to the incident

light. This is expressed by

n = no + n,1 (3.7)

where no and n.2 are the linear and nonlinear indices of refraction.

Refractive index is related to the permittivity of the medium, r, through

e = = no + 2notnj +higher order terms (3.8)

2Here no = £, and 2norn2 =-,.

Thus,

2non2 I = X(3)E.E (3.9)

which implies that,

Z(3)

2eocno (3.10)

since
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I-or an absorhingi material we have the equafons

/= /, cxp(-t.-) and 1 /',=cxp(inkC) 12)

where /. and E, are the incident light intensity and electric field respectively. (z is the

linear absorpton coefficient and k is the wave vector.

From equation 3.1 12 we get

a =-Im(n)k = lin%' 11)
2C0Cno C (3.13)

The term a is the slope of the linear part of the intensity dependent absorption line. It

can be approximated to

a -- • (3.14)
2 Isl

Combining equations 3.12 and 3.13 results in

(i) - oc 1) a0A_____
lm.Z• '- cn• a°

2 ;rl,,,, (3.15)

which is the same as equation 3.3.

Once /,,,, has been determined from the nonlinear least squares Fit and a,, from

a low intensity, linear absorption spectrum, it is a simple matter to compute the

imaginary part of the third order susceptibility. This was done for all of the samples and

the results are tabulated in table 3. 1.

The real part of the susceptibility can be measured by placing an aperture in

front of the signal detector, as described earlier on in this chapter. It was found that the

trace observed in this case did not exhibit increased transmission peaks and decreased

transmission valleys, indicative of a refractive index change but was, in fact, identical

to the trace obtained with no aperture. This implies that at these wavelengths, that are

very close to the surface plasmon resonance frequency, it is the imaginary part of the

susceptibility that dominates over the real part. This, of course, comes as no surprise

because the real part of the susceptibility is expected to be low in the vicinity of a

resonance decreasing to zero at its peak. The imaginary part of the susceptibility.
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RESULTS OBTAINED

Size aoo(cm ') ao(Cm,,-) 1, I" 31 Z'J III x i

Samplle W1n 22 m I / (.111 IV / on • m V-- /11 1/ -2

A{ 516nm 522nm 516nmn 522nm 516nm 522nm

N 395 5.50 5.74 3.45x10' 3.45x10 8 1.12xl1-('9 6.49x%(1 0-

M 392 8.81 9.32 4.70x 10' 1.89x 10( 7.23x 10-2' 1.9210-W''

0 365 6.10 6.29 1.05x108  1.10x10 8 2.24xl-W' 2.23x10)-"'

R 326 25.79 26.82 3.18x10 8 2.36x10' 3.13x10-"' 4.43x10-' 9

S 184 4.67 4.78 8.01x107 3.75x10 8 2.25xl10-' 4.97x10-'°

Y 179 9.84 9.91 1.93x10 8 1.52x10 8 1.97x10-`9 2.54x10-' 9

K 172 15.94 15.98 2.72x 108 1.86x 108 2.26x10-`9 3.35x 10T9

Z 164 4.69 4.75 1.63x10" 1.81x10' 1.llxl0-'9 1.02x10-9

P 52 8.69 8.82 5.32x10' 7.13x10' 6.3x10-'0 4.82x10 - '0

Q 47 8.81 9.09 2.78x10" 1.40x10 8 1.22x10` 9 2.53x10-' 9

Table 3.1 Experimental Resuits

By observation of the table it is obvious that there is no relationship between the

size of the inclusions and the nonlinearity of the solution. What is evident is that

Im Z() is proportional to the square of the absorption coefficient. This result, at a

wavelength of 522nm, is shown in figure 3.3.
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Figure 3.3 : hn.Z() Vs a,,. ,A1 = 522nm.

At higher concentration, the value for Irm X) seems to level off. Past a certain

volume fraction of particles, the Maxwell Garnett approximation for calculating the

local field in the inclusions is invalidated. If the particles are stiff iciendly close to interact

significantly with each other, the field in each individual one is reduced, leading to a

correspondingly lower value for the macroscopic susceptibility.

The quantity, lm Z"), in the above table and graph, refers, to the nonlinearity of

the solution, not that of the actual gold particles. In order to extrapolate, from this, the

correct value for the inclusions, the concentration of the solutions and the local field

factor discussed in chapter 2 have to be taken into account.

From equation 2.42 it can be seen that the susceptibility for the inclusions, -,

is related to the macroscopic susceptibility of the solution through:

X#3) -J f3 (3.16)

where p is the volume fraction of the inclusions and f, is the local field factor. Using
this equation it is possible to calculate Z(3) and the result-, are tabulated in table 3.2.
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a le IhiX h % "

516nm 522nm 516nm 522nmn

In I V /it', v-2 x l)-; 516nm 522nm V_2-2

N(395) - I. 12x 10-I' -6.49x !0-2' 1.90 0.992 1.090 6.06x I10-" 2.4 1 x 10-

M(392) -7.23x10'- -1.92x10"' 3.16 0.964 1.060 2.65x 10- 5 4.81x10-"

0(365) -2.24x 10-' 9 -2.23x 10-i"' 2.23 (.937 1.031 1.31 x 1-1 4 8.88x l105

R(326) -3.13x 10-' 9 -4.43x 10` 9 9.98 0.886 0.975 5.09x 10- 5 4.91x 1(1-5

S(184) -2.25x 10-2  -4.97x 1I- 20  1.14 1.114 1.222 i.28x 10-I 1.95x 10-i

Y(179) -1.97x10-' 9 -2.54x10"- 2.65 1.257 1.378 2.97x10-"5 2.66x10-15

K(172) -2.26x10-` 9 -3.35x10-' 9  4.37 1.230 1.350 2.26x10-T" 2.11x10-T5

Z(164) -1.11 x10-9 -l.02x10-l' 9  1.28 1.247 1.367 3.59x10-"5 2.29x10-I"

P(52) -6.30x 0-20 -4.82x 10-20  3.13 0.942 1.036 2.56x 10-I 1.34x 10-15

Q(47) -1.22x10-` 9 -2.53x10-` 9  2.77 1.085 1.191 3.17x10-'5 4.53x10-"5

Table 3.2 : Values of' z,( calculated from the macroscopic susceptibility of the
solution.

CONCLUSIONS

The most important conclusion to be drawn from these results is that ;13, is

also independent of the size of the particle, at least within the size range of this study.

The values obtained for x")i are almost an order of magnitude higher than those

obtained by Hache et a/.(7, 8, 9) This is not surprising since they calculated their local

field factor by comparing the absorption spectrum of their largest particle, which they

approximated to have bulk values, to the absorption spectrum of all the other particles,

to obtain -,, while in this study, the absorption spectrum of the particles was compared

to an actual bulk gold spectrum, to calculate e,.(10) The latter method yields a lower

value for the local field factor and hence a higher valve for the intrinsic susceptibility of

the inclusions. By way of comparison, it is interesting to note that BiI 3 microcluster

colloidal solutions are reported to have Z,(' values almost two orders of magnitude

greater than these ones for gold clusters.(61

If, within experimental error Z(" can be taken to be constant, it turns out that

the susceptibility of the solution is proportional to the fourth power of the local field

factor which is in turn proportional to the square of the absorption coefficient. This is

exactly the same as the result expressed in figure 3.3.

In conclusion, using a simple but effective single beam method, it is possible to

evaluate the sign and magnitude of both the real and imaginary parts of the nonlinear
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colloidal gold solutions used in this study showed a nonlinear response donhiiated hv

the imnaginary parn of the susceptibility, which is to expected since the experimentS were

i,,.10lt e1hl kid inI lit" %iCilnitY of thie sUiriacc plm on l esoll ancL fiC lreqUellcy. 'll. C.l 1,'l.% (1or

macroscopict nonlinearity ol the solution is negative. This is implied by the fact that tile

,.,sorptiuon decrcascs \ with inlcreasing inltcnsitv. hIe nonlinearlty of thLe inclusions is

Idlated to the noilincarntv of the solution throughi thie local field factor _.., At these

wavelengths. l is nearlv real and neg,-,atived which leads to tile conclusion that Y, is

ncarly imaginary and positive. Thus. v hi lc the absorption ol the colloidal solution

dcreascs with intensity, the absorption of the inclusions actually increases! This is a

consequence of the local field correcuon.

Despite the fact that saturated absorption spectroscopy is a very powerful and

useful technique, it provides no information on the dynamics of the interaction between

the nonlinear material and the electromagnetic light field. To do this at least two or more

beams are required. The following three chapters describe different experimental

techniques in which this is done.
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CHAPTER 4

I)EGENERATE FOUR WAVE MIXING USING A COHERENT

LIGHT SOURCE

Four wave mixing is one of the most interesting and thoroughly investigated

nonlinear optical effccts.01 ) It is a process that is allowed in all media and has therefore

found numerous important applications. Because of the inherent resonant enhancement

feature, it has attracted a great deal of attention as a modem spectroscopic technique.

With appropriate arrangements four wave mixing can be used to study transitions

between excited states, to measure longitudinal and transverse relaxation time etc.

Thus, experiments on transient four wave mixing can be used to study not only the

particular time-ordered four wave mixing process itself, but also to obtain the various

relaxation rates in the medium.

In general, transient four wave mixing deals with the situation where three input

pulsed fields, of either the same or different frequencies, interact in a medium in a given

time order. The radiative output, which is the fourth wave, shows a time variation

depending on the time sequence and separation of the input pulses. If the four waves

are all at the same frequency, o), the interaction is termed degenerate four wave

mixing, hereafter called DFWM. In general, two of the fields are strong and are called

the pump fields and the weaker third field is called the probe field.

The second nonlinear polarisation term in equation I. I, which expresses the

relationship between polarisation and the applied field,

P=co(Xz'EE+,Z1 1 E2 + E " E ....) (4.1)

i.e., P= EOX 3)E.E.E is the one responsible for this process. (Recall that for

centrosymmetric or non-isotropic materials Z(2) = 0).

If the two pump beams are counter propagating and the probe beam enters at a

small angle with respect to them, as shown in figure 4.1, the signal beam propagates

backwards through the medium and remains everywhere a phase conjugate replica of

the probe beam. This process is called "Phase Conjugation". It is technologically very

important because it is possible to use it to design self-adaptive optical systems that

compensate for time varying phase distortions in, for example, high gain laser

oscillators and amplifiers, optical fibres, etc.(2)
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TFhe first observations of phase colnlugation by four wave mixing were reported

by Blloom and Bjorklandl); and Jensen and I lellwartht 4 ), both parties using CS, as the

nonlinear medium.

THEORETICAL FORMALISM

The fields involved in the interaction can be described as plane waves using(5 ):

Ei(r.r) = I A,(r,)expli(kr - xt)l + c.c.} (4.2)
2

where k, is the complex propagation vector, r, is the distance along ki and c. c. denotes

the complex conjugate. k, can be described as

k+ = (k;+ i/ 2) (4.3)

where k, is a unit vector in the direction of propagation of E,, a is the intensity

absorption coefficient in the medium at the frequency (o and k, o

The induced nonlinear polarisauon can similarly he written as:

PNL'(rt) I {P(r)expl-iwotJ + c.c.} (4.4)
2

Where,

3 A .)P(r), = -•'o {j,!1(-w.owo-ow):A,(rl), A2(,'2 ) Ad,.), exp~ir.(kAc + k•- k3 )I}

(4.5)

By substituting for IP"' in the inhomogenous wave equation.
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and applying the slowly varying envelope approximation (SVEA) i.e.,

k2 A dA, <)A,47kOA >> k dA >> ()--'S 4.7)

it is possible to solve for the field amplitudes A4 and A; which represent the new
"signal" beam and the probe beam respectively. By standard techniques, the following

equations are obtained,

dA. = iQA; exp(-az)
dz (4.8)

dA; = iQA4 exp(az) (4.9)

dz

The coupling constant Q is given by

Q= cn XAI(O)A2(L)exp- 2 a (4.10)

L
where n is the complex index of refraction and L (., where L is the sample

thickness.

Using the boundary conditions A,(L)= 0 ( no phase conjugate wave initially ) and

A;(0) = A3 ( the initial value of the probe field ), the solutions of equations 4.8 and

4.9 are(5),

A 4 (Z) = 2iQA; sin[ H(Z - L) / 2] exp(-aZ /2)

asin(HL / 2) + Hcos(HL /2)

A;(Z)= -A;{asin[H(Z- L)/ 2]- Hcos[H(Z- L)/ 21}exp(aZI 2) (4.12)
asin(HL / 2) + Hcos(HL / 2)

with,

-=[4JQr 2_a2J"' (4.13)
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2Qsin( I/12) /2)

A () atsin( Ill. / 2) + I/cos( IlL. / 2)

In the limit of low Irk-lCtIXIt\.

R 71 -eXp(-(1-L)J2<4s

The third order susceptibility. X'%, is related to the rellectvity, R throughl5 -, . 7)•

4c2n2razfV-R (4.16)
3wIV1'x(I- T)

where is a the linear ahsorption of the sample, and T is the transmission through it.

EXPERIMENT

Phase conjugation is only one of the many different geometrical configurations

for DFWM. Another arrangement that is commonly used is called the "folded boxcar"

configuration.( 8, 9) It was the one used in this study and is shown in figure 4.2. It

consists of two pump beams that overlap and interfere in the sample to produce an

intensity modulation that is subsequently detected by a probe beam. This intensity

modulation can affect the sample n many different ways : it can result in a refractive

index modulation, a populatioi. iodulation, absorptive index modulation etc. The

modulation can be visualiscd as a diffraction grating within the sample. i.e., the pump

beams "write" a grating. "Reading" this grating can Live information on different

physical properties of the medium. T'his is done by the weak probe beam. When the

probe beam is incident on the grating it diffracts in a new direction giving rise to the

signal beam. The signal beam is detected by a calibrated photodiode/lock-in-amplificr

(LIA) combination. The LIA is triggered by a mechanical chopper in one of the incident
beam paths.
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Figure 4.2 DFWM using the "folded boxcar" configuration. (C.D. Cavity
Dumper)

It is now usual to talk about the diffraction efficiency which is defined in the same

manner as the phase conjugate reflectivity.

The relationship between Z(3) and the diffraction efficiency T7 is given by

8c'n2E°0a4F (4.17)Z 3o = 3•IT(1 - T)

Thus, in order to determine the third order susceptibility of a particular sample

one need only measure the ratio of the energy of the diffracted beam to that of the probe

beam. It is possible to separate out the different tensorial components of Z(3) by

varying the polarisations for the pump and probe beams. By introducing a time delay

between the probe beam and either of the two pump beams it is possible to determine

the relaxation time associated with the grating and hence the decay time of the physical

property that was modulated by the interference pattern of the pump beams.

The laser system used in this study was a cw mode locked Nd3÷ doped YAG

laser operating at a repetition rate of 100MHz. The output of the laser was frequency

doubled and then used to synchronously pump a dye laser. The dye used was

Rhodamine 6G which provided a tunability from 560 - 6 10nm. The output from the

dye laser was fed into a cavity dumper in order to reduce the repetition rate. It was

possible to vary the repetition rate from 10)Mliz down to about 40K! tz. The width of
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harmionic gencraLing crystal and found It) he -5ps. A cross correlation of the two punm p

beams was taken at the sample to ensure that they arrived at that point simultaneously.

The delay of the probe be'am was then scanned to find which setting produced the

IlllilaXIIUuil signal.

E'ven at the lowest rcpctition rate of 40 Ki I. the only sample that it was po5ibl5e

to do measurement% on was a 50A gold colloid dissolved in acetone.

The sample was examined at a range of different repetition rates at a wavelength

of 580nnm. lThe concentratio nv was the same in all cases. The results are plotted in figure

4.3. The background at r < () is just scatter from the chopped beam that is collected by

the signal detector. This is verified by blocking the other two incident beams. From the

figure it can be seen that as the repetition rate is increased, the signal decays with a

continuously slower relaxation time. This is indicative of a thermal build-up in the

solvent due to absorption of energy by the solute. For the water soluble colloids. the

thermal build is more drastic making it impossible to perform any meaningful time

resolved experiments, even at the lowest repetition rate of the laser.

When all the three input beams are time coincident at the sample, the magnitude

of the DFWM signal is related to W"I"3• 2. It can be determined by measuring the

diffraction efficiency of the sample, relative to that of a well characteriscd solvent. This

is done to allow for variations in the beam quality. The solvent in this case was CS,
which has a x") value of 6.8x I(0-esu.(i0) The tensorial component ;,(" refers to

the case when all three beams are linearly polarised in the same direction, which

corresponds to the experimental situation.

When the measurements arc done relative to a reference sample. Z"' for the test

material is obtained using the formula.

(3) =3) 1 n2 aexp(ad/ 2)

C. n,2 I - ex p(-ai)

where, I and lo,, are the diffraction efficiencies and n and ncsý are the linear refractive

indices for the sample and for the reference material, CS,, respectively, and a is the

linear absorption coefficient of the sample.
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RESULTS OBTAINED

It is possible to examine the relationship hetween the absorption coefficient and

NuscCpt hiIi ti by performing the experiment at a ran1e of different waent le' il hs. The

k avelcmnth \%,iwa varied from 562-606nm. and the results ohtaincd arc shown in Table

4.1.

Absorption Coifficit't:;

562 50.19 1.62x I(-"'

569 46.04 1.29x 1(0'

575 42.72 !.00x I o-19

581 39.28 8.67x 10-2 0

587 36.48 6.95x 10-20

594 32.95 4.58x 1(-2 0

600 30.46 3.53x 10-20

606 28.21 3.24x 10-'°

Table 4.1: Results obtained for wavelength dependent measurements

The resul ts are shown graphically in figure 4.4.

18 x10-20

16

14 /

12

S 10

, 8

6

4

2.5 3 3,5 4 4.5 5 5.5
Absorption Coefficient (rmni 1)

Figure 4.4 " r' Vs Absorption Coefficient, a

As cxpected. ' is again proportional to the square of the absorption coefficie n. The
tailing off of with increasing absorption coefficient, as observed in chapter 3, is
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Hot SCCfl here as the concentration is well below the threshold value fbr the Maxwell

(arnett approximation, for the local field in the inclusions, to be applicable.

Furthermore, the absorption is changed, not by varying the concentration, but by

varying tie wavelength.

The value for X,"', the susceptibility of the inclusions is obtained from the

macroscopic susceptibility using the formula 2.42,

l( f, a (4.19)

The results are tabulated in table 4.2.

IX3)I('nl2V-) f 1x)(nz2V-2)
1.62x 10-' 9  1.183 4.02x 10-l'

1.29x 10` 9  1.138 3.74x 10-T6

1.0Ox 10-19  1.092 3.42x 10-' 6

8.67x 10-20 1.040 3.60x 10-16

6.95x 10-20 0.990 3.52x10-' 6

4.58x 10-20 0.928 3.00x 10-16

3.53x 10-20 0.877 2.90x 10-' 6

3.24x 10-20 0.828 3.35x 1-1 6

Table 4.2 : values for the susceptibility of the inclusions, tlking into account the
local field factor, f,. The value for p is 2.Ix 10-.

CONCLUSIONS

These results imply that the susceptibility of the inclusions is independent of the
wavelength or the absorption coefficient of the colloidal solution. The only quantity that
varies with wavelength is the local field factor f,. From equation 2.y it can be seen that

the absorption coefficient, a, is directly proportional to the square of the local field
factor. Since Z"3) is proportional to the local field factor to the fourth power, ( taking p
and 3 to be constant, within experimental error ), it should also be propo'ortional to

the square of the absorption coefficient. This is the result shown in figure 4.4. The
values obtained for X,"' in the wavelength range 562-606nm are of the same order of

magnitude as those obtained by Hache et al. at resonance.( 1 ,' 12, 13) The reason for

this, as explained in chapter 3, lies in the value of the local field factor and the method
that is used to determine it.
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say what contribution of tihe diffracted signal comcs fronm the real part of the

susceptl hili ty and what .ontrihutin conies from (he mi agmary part. The local field

factor Ia at llic.se wa vehenetVhS has real and linainilury pAts, Of Cqual iili.agiuiidec. bhoth

h nlli- i osit iV . Fhis in forniration is, however, redundant since the niacnitudes of the

real and iin• ainary pagirts of the macroscopic suscCpt i hiIi iv areV unknown. This imleasls

that thei relative magnitudes of' the real and imnaginary parLS of' the susceptihilitits' ol ie

inclusions also remains unknown. [he onlv thing that ce;•i hc said is that the real part of

the susceptibility is probably not negli ible. This wa.s the case in Chapter 3 ( i.e.. the

rcal part of the susceptibilitv was lne•l2hible )whtlrC the _lcx periicntls were heing

performed very close to the surface plasmon resonance frequency. As explained in

Chapter 3, the further away from resonance that the experiments are performed, the

greater should be the relative contribution of the real part of the susceptibility.

The change in the DFWM signal as a function of time delav of the probe beam

gives the decay of the grating and hence the time response of the optical nonlinearity.

The experiments were all performed at a repetition rate of 286 H1z. The response time in

each case, which is a higher order autocorrelation of the laser pulses convoluted with

the material response, was found to be shorter than the intensity autocorrelation width,

indicating that the experimental resolution is limited by the laser pulse width. The only

information to be gleaned from this experiment, therefore, is that the lifetime of the

excited state in the resonant two level system is at most 5ps. This result is consistent

with measurements performed by Hache ci al,(1 1. 12, 13) Bloemcr et al(14 ) and Heilweil

and Ilochstrasser.01 5) A similar result was found by yang et a/ for Copper nanocluster

colloidal solutions. (16)

[he relaxation processes in a resonant two level system are usually described by
a second parameter, T, along with the lifetime of the excited state. T, also known as

the longitudinal relaxation time. The parameter 7T, is known as the transverse relaxation

time or the phase relaxation time. It represents the decay of the coherence between the

two levels. By an appropriate arrangement it is possible to determine T. from the above

DFWM experiment as well. However, T, generally lies in the fsec time regime and so,

using coherent 5 psec pulses would give very little information about it. The following
chapter describes a novel technique for determining T.. using incoherent light.
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CHAPTER 5

DEGENERATE FOUR WAVE MIXING USING INCOHERENT
LIGHT

In order to understand the dynamical behaviour of light-matter interaction, it is

very important to study the relaxation processes associated with the excited states of

materials. In many cases of interest, especially in condensed matter, these relaxation

processes take place on a subpicosecond or femtosecond timescale. In transient

spectroscopy using coherent light, the time resolution of the experiment is limited by

the pulse width of the exciting radiation.(1, 2) Thus in order to probe the dynamical

behaviour of such materials effectively it is essential to have access to ultrafast lasers.

To this end, a lot of effort has been devoted to obtaining short pulse lasers and with

CPM dye lasers, pulses with widths of less than 100 fs have been obtained. Even

shorter pulses, with pulse widths of 6 fs have been generated by using a pulse

compression technique.( 3, 4) There are, however, several problems associated with

using such short pulses. Firstly, the optics required to generate or compress ultra short

pulses are complicated and prohibitively expensive. Also, as there are not very many

suitable combinations of laser dye/saturable absorber, ultra short pulses can only be

generated in a very limited wavelength regime. Finally, even if one were able to

succeed in getting a short enough pulse at a suitable wavelength, there are further

problems associated with the dispersion of the pulse as it traverses through the optics of

the experiments.

One solution to this problem is to perform the experiments in the frequency

domain. In 1978 Yajima et al (5, 6) proposed resonant Rayleigh-type mixing
spectroscopy for the measurement of the longitudinal relaxation time, T,, and the

homogenous transverse relaxation time, T2, and the relaxation times in some materials

have actually been measured.( 7) However in this case the analysis of the results is

extremely complex and can lead to ambiguities in the determination of these times.

Prompted by these difficulties, in 1984, Morita et al (8) and Beach and

HIartmann (9) independently came up with a new specu-oscopic technique that utilises

temporally incoherent light to determine ultrafast relaxation times. Traditionally optical

coherent experiments have always been performed with coherent laser light. While this

may he essential for experiments such as self induced transparency, it is not a universal

requirement. Indeed, not only can optical coherent transients be generated with an
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can onrly bC induced within the bandwidth ol the cxcitatior t source. ljor a laser

O.cillatine 11. at most, a few well defined modes. this means that only a small fraction

of ithe atoms or molecules within the resonance line participate in an experiment. '[his

probllem Call bCe otvercomelC by performing the cxper ienht usinl•2 a broadband incoherent

liTelt sounrce which also provides ultrahigh time resolution. [he basis of this method is

that thc siignal light generated oi modulated by non illcar optical cffects consists of a

c'onrlation of the matenial response and the input field and, as such. is dependent on the

coITClation time of the pulse instead of its width. eimporally incoherent light has a wide

spectral , idth, Ai), and a correspondingly short correlation time determined by I/Au,

which is much shorter than its temporal width. Fhis kind of light appears as a single
pulse of duration "t in an autocorrelation experiment ý IM and is therefore expected to

play the same role as a short pulse in experiments utilising the correlation technique.

This fact has been verified experimentally in several situations, including Raman
spectroscopy,(I 1, 12, 17, 19) for measuring vibrational relaxation times, and Degenerate

four wave mixing (DFWM) (13-19), photon echoes t9. 20) and pump and probe

spectroscopy (21).for measuring phase relaxation times and excited state lifetimes of
nonlinear materials. This chapter focuses on the measurement of the dephasing time of
colloidal gold solutions by DFWM spectroscopy. In the self diffraction configuration,

two temporally incoherent light beams with wave vectors ki and k2, originating from a
single beam at frequency w are made to overlap in a nonlinear sample.(2) Due to the

third order nonlinearity of the material, two new output beams are generated at the same
frequency but in the directionsk3 = 2k, - k, and k. = 2k, - k. Even if the pulse width

of the light is much longer than either T1 or T, the correlation trace, i.e., the diffracted

light intensity as a function of delay time. r. between the two beams. decays
exponentially with a time dependent on 7"., provided that the coherence time of the
pulse, r, is less than i\.8) This fact is extremely useful because it is far easier to

prepare an incoherent light source with a short correlation time r, than to produce an

ultrashort pulse with the same duration, especially in the range less than I ps. In an
extreme case, even cw light, which has an infinite duration, is capable of providing f's
time resolution provided it has the adequate spectral width. In the event that r, is not

very short, the resolution of the experiment is limited on it.
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THEORETICAL BACKGROUND

The electric fields of the incoherent light beams involved in the interaction can

he described as (S)

E(r,) t ~(-!U ex P(W + ik. ) + C.C. (5.1)

with,

)= (5.2)

where k is the propagation vector, ii is a unit vector in the direction of k, c.c. denotes

the complex conjugate, c(t) is a normal function and R(t) is a complex random

function representing a stochastic stationary Gaussian process, which is how the

incoherent beam is represented.

For such a function,

(R'(t)R(t + = f(r) (5.3)

(R(t)R(t + r)) = (R (t)R (t + r)) = 0 (5.4)

(R'(t)) = (R(t)) =(0 (5.5)

where f(r) is the correlation function.

The total electric field incident on the material is a superposition of the two

fields with wave vectors k, and k 2 where the field with wave vector k2 is temporally

delayed by r relative to the other. The total field can be written in the form

E(i, t) = E,+ E,2 = Kt( + r f.F LCxp(-iw(Oz+ r) +ik-1 F) +

I- Th exp(-jw + iki)} + C.C. (5.6)

The relaxation processes in a resonant two level system are usually described by

the two parameters, the longitudinal relaxation time, T1, representing the decay of the

population difference and the transverse relaxation time. T,., representing the decay of

67



th Ve" l t'd l L'Cl•'i l .S" i' , l i Iht' S I\i.is oi 'ln.dc I Iht'lt' I)C 1 i l l l'ii lt i ()1 lV ItI' )il d I

h•'%t.-twc ll tihle leve'tls III' 'V0 u'l IS COlIIdC'C'd to! he ifllhollimi:e.llolusly hroadClie•d

Tlh' outLptI lii!ht field at (het frequency. w) Ill l Ia our wave inixinfll! procL'ss is

prolpoialiiO t)l i Ihc third midclr induiced R) larisl.aion't \hlch hias tile i lor1,

V "'(17.1) P-i ( . i' p - , )÷,. .• i

\Yith.

l"' "(~:,t) NJ ,(1 j ,j,( 1.I ,o, )."'((1,, 0 .8)

where N is the atomic number density, the subscripts a and b denote lower and upper

levels, respectively, 4,,, is the electric dipole matrix element of the transition between

the two levels, and g(w 0) is the distribution function of the transition frequency, w,,,

charactcrisine the inhonioienous broadening, ,'(. , o) i. the third order, off-

diagonal density matrix element. It contains four components at the wave vectors kj,

k,_ k, =2k, -k,,and k, = 2kl -k. Since the experiment involves detecting and

measuring the signal in the direction k,. it is only necessary to consider the k,

component of Pba

This is given hy die cquation.(8)

k -21otuI, h]exp(Ak.f+i(Or)X

ltf it, f, (it, I,,{'(,,) (,,) ' (i, + r)cx• l-t((e),, - ,,,)(1, -,-, . A

+ý(r :*(I, + r) (,,)xp[-i(<0 - (0)(,- t, + ,: - ,,)i}

Xexpt-Yl(r, 1,)- Y2 + (' (5.9)

w here y , = T1', Y2T, 1' 0 ) is the thermal equilibriunm value of tile population

difference ofl the two levels, t, = t- is the reduced time assuming that

11 n. = n and ji,,, = i,#, = P.
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The outpult light intenISity, which is the quantity that is actuallV cx pen ineiitallv

measured is proportional to Pr3)(it)[. lHowever, because of the random nature of

P "(,.t), it is necessary to calculate the statistically averaged value, J(kI,), of this

quantity. which can he written as,(S)

The function F(r) determines the shape of the correlation profile. It can he

calculated when a reasonable form is given to the correlation function .j(,r). f( r) is

usually approximated to be a delta function. Though not absolutely correct, this choice

is reasonable since the rate to be measured is much greater than the coherence time of

the pulse. In the event that the coherence time is comparable to or greater than the

quantity being measured, the analysis is unnecessary since the only information that can

he obtained in such a case is, a value for the upper limit of that quantity.

The explicit form of F(r) when g(co.) is a Gaussian distribution centred at WJ•

with a width of Sw is shown for two extreme cases in what follows :8)

(i) Homogenous broadening case, wo = 0.

(i.t) r> 0

F(z) = c, U+ 2(4u) exp(-2x) - 4(l - ,)exp[-(2 + u)x]I 1 -11

U2 (3- u-+U:(- exp(-2u~x) (.1I

(i.iii) '<()

F(r) cj[u + 2exp(2x)] (5.13)

ii) Extremely inhomogenous broadening case, 6)w -4

lii~i) r>()
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c,1 -- i) +xc (-lx ) 22(l- .) c p -(2 1 I)lk + sit ' xp V(- f d)
I-'( ) - ,: •-(2 - it)

('. .14)

(iilii) 1 --4)

F.(() ' + 4) (0. 15)

F(r) = c,u (5.16)

where,

C, = - (5.17)
4 y ?'2

and

2"DrD 3  (5.18)

u = .L x = y2r and D is a positive constant proportional to the spectral density of the
Y2

light.

COMPARISON WITH SIMILAR EXPERIMENTS USING SHORT
PULSES

It is instructive. at this stage, to compare the signal behaviour in this case to that

in a conventional, short pulse. two beam seli diffraction experiment, hereafter referred

to as short pulse DFWM. The similarity between the processes lies in the fact that both

profiles reflect the relaxation processes governed dominantly by the phase relaxation

time 'T,. There are, however, three main differences.

(i) The correlation traces in this experiment do not necessarily decay as single

exponentials, while those of short pulse 1)FWM experiments always decay single

exponentially at a rate proportional to I.
T,
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i lic present correlation profiles have [1011 ICer values at r1'+ while 1

hackground exists in the short pulse DFWM case.

(iii) In this experiment the correlation profiles at r < () grow up with increasing r in

the homogenous broadening case. while those in the short pulse I)FWM case are

always zero at r < 0.

[ront (i) it can be seen that the profile from such an experiment, thus, does not
necessarily give us one of the relaxation fimes T, and 7' in as unambiguous a manner

as the usual self diffraction experiments. If. however, T, >> 1r,, the profiles represent a

single exponential decay with the rates 2T-' and 4r/' for the homogenous and

extremely inhomogenous cases, respectively. These rates are consistent with those in
the short pulse case and T2 can be uniquely determined. In condensed matter, such as

singlet-singlet transitions of dye molecules, interband transitions of semiconductors
etc., T, is generally very short and often falls far below Ips. In these transitions, the

population relaxation time 'T, is often much longer than "/'. Therefore, in these cases

the present method is a powerful tool for determining 7",.

In the event that T, is not much longer than T2, the present method cannot

determine the relaxation time T2 definitely. However, even in the worst case, it is

possible to determine T2 within the error factors of 1.5 and 2.7 in the homogenous and

extremely inhomogenous broadening cases, respectively.( 8)

EXPERIMENTAL SET-UP

The experimental set-up, for mearsunng T,. is shown in figure 5. 1. The lPRA

dye laser was pumped by a PRA Nitrogen laser and emitted 500ps pulses with energies

of 30 - 40 WiJ at a repetition rate of I - 5 Hz. The dye used was Coumarin 485.

Diffracted
"/ Signal

Nitrogen Pumped
l)ye Laser Sample

50: 50 Beam Motoriscd Delay Line
Splitter

Iisure 5.1 : Self dilf, fiction corllituration iotr (degenerate tour wave nixing.
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the sample (thickness 0. I mm) usinC a 2() cm lens. 1k' delay time t between the beams

was changed by a steppi ri� motor.

The spectral width oh the emitted radiation � as increased by replaci ii� the

dillraction CratiriC in the dye laser oscillator cavity with a mirror. t 17 � I iider these

conditions the bandwidth was t�mnd to be I 0.5 ii in wit Ii a centre wave len 12th of 522nm.

'lb i5 coiTesponds to a cobereiice ii iiie o I X(. Si's.

litzure 5.2 shows the results ol the baiidwi(ltll iieastiremeni. The cx pcrlinent

was perlormed by passi tie the beam through a nionochromator and mon itori iw its

energy a the exit slit as a junction 01 the wavelength selccted.
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*hc hain plcs utudied were

SAMPLE .4 VERA GE DIAMETER (A)

Q 47

C 50
P 52

S 184

( ) 365

M 392

N 395

RESULTS OBTAINED AND CONCLUSIONS ON THE
MEASUREMENT OF THE DEPHASING TIME

The correlation profiles for three of the samples, C, S and M are shown in

figures 5.3, 5.4 and 5.5, respectively. These three samples reflect the range of sizes

used in this study.
1 0

0

.- 0.9

, 0.8

0.7
00.

7- 0.

0.5
, 0.4 0 0

00 0

0.3 r 0- o0 oo0000 000°0 00 ° 0o

0.2
-400 -A(X) -200 -100 0 1 OM 200 300

Delay Tine ( fs )

Figure 5.3 : S~unplc C. Diffiracted intensity Vs delay time.

73



00

040

0
04 o

"> 0 0

: 0!.2 'oo 0
-,0

0.8o 0

00

-4(X -3(X) -2X)) (X) () I (X) 2(0) 300

lDelay Tiinc ( Cs)

Figure 5.4 :Samnple S, Diffracted intensity Vs delay hime.
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Iigure 5.5 : Sample M. Diffracted ianensity Vs delay time.

The experiment was also performed on a dye solution of Rhodamine B, as a
reference material, known to have a suh-ps phase relaxation time.(23) The result is
shown in figure 5.6.
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Figure 5.6: Rhodaminc B, Diffracted Intensity Vs delay time.

From all the figures, 5.3 - 5.6, it can be seen that the correlation trace is

symmetric about the zero delay position. The background signal at r = +o is also

evident. The signal to noise ratio in this region is quite low, hence the apparent

fluctuations.

"The fact of the correlation trace being symmetric implies that the relaxation time

is faster than the coherence time of the pulse, i.e. the resolution of the experiment. The

observed signal, therefore gives a correlation profile IG( r)l2 of the incident incoherent

light where G(r) = exp(-tý/-rt) is the autocorrelation function of the incident field. In

such cases, however, it is still possible to measure T, by monitoring both the diffracted

beams simultaneously and measuring the time lag between them. For homogeneously

broadened systems the two traces should completely overlap. For extremely

inhomogenous systems, however, the two traces will be separated in time.016. 17, 19,
24) This time corresponds to the phase relaxation time. Depending on the degree of the

inhomogeniety, however, this time will vary and is, thus, not a completely accurate

way of determining TF,.

Nevertheless, the experiment was performed and it was found that the two

traces overlapped completely. This could mean one of two things:

(i) The materials can be described as homogenous systems. From Chapter 3. this is

known to he untrue.
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relaxation tinie shorter than thlat which can he measured using the delay line. [he delay

line moves in 2.5Apm steps and, since it is a double pass line, this corresponds to a time

delay of 171s. 11is, then, is [he ultimate resolution of the experiment. 'Ilius, even if fhc

materials arc extremlcly inuhomogenously broadened hut have a; phase relaxation line (d

the order oh 20 s., the two correlation traces will not be separated In lime.

Point (ii) is taken tI) hc the correct interpretation of the results as it is COnsiStenlt

with the findings of' Chapter 1. It is also consistent with the(oretical calculatioMs done hV

ly'tzanis ,t al.(25, 26)

MEASUREMENT OF THE MAGNITUDE OF THE NONLINEAR
SUSCEPTIBILITY

By measuring the magnitude of the diffracted signal, when both the beams are

time coincident on the sample, it is possible to determine the absolute value of the

nonlinear susceptibility ; "', using equation 4. 17 of chapter 4.

8C2n2%0F (5.19)Z 300 = 3olf(I - T)

The diffraction efficiency is given by the ratio of the diffracted signal to that of one of

the pump beams.

rable 5.2 displays the results of the calculations, including the results obtained

for the susceptibility of the inclusions using the formula 2.42,

- 0 ( 5.20))

II~ffI f7
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IAbs. (:o-e~j:

Sample Size (A) (c07') 1 (1-V 2 ) f"(t2V-)

N 395 221.5 3.23x10-19  1.074 3.31x1 0-1)

M 392 135.6 1.15x 10- 19  1.064 1 .98x 10-1"

() 365 125.3 1. 13x 101 9  1.028 2.34x 10-1'

S 184 153.8 1.90x 10-1 9  1.330 1.48x 10-1"
1: 52 253.3 7.13x 10- 20  1.003 7.86x 10-17

C 50 50.7 4.42x 10- 20  1.133 1.72x 1 0'1"

Q 47 451.1 4.95x 10-19  1.118 2.21 x 10-l)

Table 5.2: Values for the macroscopic susceptibility and the susceptibility of tihe
inclusions, obtained using incoherent Light.

X (3) again shows the familiar square dependence on the absorption coefficient.
This is shown graphically in figure 5.7. The values for Zj are of the same order of

magnitude as those measured by Hache et al.(27, 28, 29) At first this seems surprising in

light of the arguments of Chapter 3. However, bearing in mind that the experiment
measures an absolute value for X(), ( as opposed to a comparative value ) there is

scope for error in the measurement, especially in the determination of the intensity. The

results obtained could be improved upon by performing the experiment relative to a
well characterised sample, such as CS2 to allow for variations in the beam quality.

This, however, was not done as the results were only out by a factor of 2-4, which, in
nonlinear optics is generally considered a reasonable error. One conclusion that can be

drawn from these results is that the diffracted signal obtained is from a truly electronic

effect and not from a thermal grating. The logic behind this conclusion is that if a

thermal grating were contributing to the signal, the diffraction efficiency obtained
would be orders of magnitude higher.
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The local field factor, squared, fl. at a wavelength of 522nm iLs mostly real and

negative implying that the macroscopic susceptibility X . and the susceptibility of the

inclusions X,'", have different signs. However, in this experimental configuration, as

in short pulse DFWM, it is not possible to determine the sign of the susceptibility.

CONCLUSIONS

"Tfhe only conclusions to be drawn from this chapter then are that the samples

have a phase relaxation time of the order of or laster than 2() (sec and that the

,,usceptihilitv of the inclusions is - 2xI -"m- V-: In order to determine what

nicchanisms contribute to the value obtained for it it, tCvCntial to know its sign and.

as accurately as possible, its response tinmc. The icsults ohtained Iromn previous

chapters and this chapter, though good, are not conclusi~e and therefore, it is necessary

to perform further experiments to evaluate the sign and the temporal response of Z,).

The following chapter describes an experiment that measures the deflection of a beam.

due to the optical Kerr effect, passing through a nonlinear material on which an intense

pump beam is incident, as a function of time delay between the probing and the

pumping beams. The laser used has a fscc pulse width and the temporal resolution is

therefore better than that obtained in Chapter 4. It is also possible to determine, from

the experiment. the sign of the nonlinearity.
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tl, TARAFAST II-AM 1FEI 1,1:C'I'HON METH0IOI) 1OR "1 1t1:

IL.\SIJIFMI-N'I 1 Tli-IIF• TRANSIENT RFRAC'TIVI7 INI)IX OF:

NJATFRIAI .S

NumLlerous ct l-ClS such as thC optical Kerr effect,( 1) illr1fC'Olnie rv t2. )ad

beanm deflection incthods, ," can ll uti l ised for the rueasurcmeni of i he lic lnl i ncr

index of refractionii-,, 1 materials. The Iirst two methods allow tin11C rCsolutioll whilc

the last, being a single beam method, only permits the determination of the magnitude

of n. and provides no information on the dynamics of the nonlinear interaction. If.

however, a second beam is used in an experiment that measures beam deflection or

distortion, it is possible to actually resolve the interaction in time. Based on this idea.

Albrecht (t aI t6) devised an ultrafast beam deflection technique kor measuring the

induced change of the refractive index of a nonlinear material that offers simplicity and

sensitivity, as well as time resolution on a fs timescale.

The principle of the experiment is depicted in figure 6.1. A weak probe pulse is

incident, normally, on a sample placed behind an aperture. AL the same time an intense

pump pulse is incident on the same point, at an angle a with respect to the probe. The

aperture ensures a definite, nearly rectangular spatial intensity profile and in accurate

overlapping of both beams at the entrance of the sample. The presence of the pump

pulse induces a refractive index change in the sample which consequently results in the

probe beam being deflected by an anigle 0. The extent of the deflection is a measure of

the induced index change and its decay, as a function of delay time hetwcen the pumnp

and probe beams, gives information on the dynamics of the material. The deflection of

the probe is mcasured by a diode array.
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Diode Array

Figure 6.1 : Schematic diagram of the experimental set-up for measuring Lhe
transient nonlinear refractive index of materials.

The region of the sample irradiated by the pump has a resultant refractive index

given by n0 + An, where nt, is the refractive index of the sample in the absence of the

pump beam and An is the index change induced by it. The change in refractive index is

related to the nonlinear index of refraction, n2 through the equation:

An = n21 (6.1)

where I is the intensity of the pump beam.

It is possible to relate n. to the deflection of the probe beam by using Snells

law.

Pump

a no'

AD
D

Figure 6.2 : Geometrical construction showing the relationship between An and
the dcflection angle 0.

In region 1, the probe beam travels through a medium of refractive index given

by ni + An with a velocity V = . The total distance travelled is given by d tan a
no + A•l

and the time taken is. therefore. i = dtana(n, +An).
C
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which is the same as die result obtained hv A:lbrcchit ei d/.

"llT greater the dellecuon of the probe beam, the greater will be the resolution of

the experiment. To achieve high deflection angles (x is chosen to be close to 86" which

results in an interaction length of =2mm. When using fs pulses it is very important to

avoid having very long interaction lengths as this results in an increase in the pulse

duration due to group velocity dispersion in the sample. Ior an Interaction length of

2mm, group velocity dispersion is negligible. The diode array that records the

deflection of the probe beam consists of pixels 25pnm wide and is at a distance of

=415mm from the aperture. Therefore a displacement of one pixel corresponds to a

deflection angle of 6x 10-' radians.

The experiment was performed by measuring the deflection of the probe beam

as a function of delay time between the pump and probe beams. lHence it is possible to

determine, simultaneously, both the magnitude and the response time of the nonlinear

refractive index. It is also possible to determine the sign of n. by comparing the

deflection observed for water with that observed for the sample. The reason that the

comparison was done with water is that it wats the solvent used. If the beam through die
sample is deflected less than it is for pure water then n, is negative, which is intuitively

obvious. This was the case for all the gold colloids tested.

The laser system consisted of a CPM dye laser ( 2 = 616nm, pulse width =

75fs ) followed by an Excimer-laser pumped amplifier cascade split by a beam splitter

into a strong pump pulse and a weak probe pulse. The width of the aperture was

150pn and the diameter of the 2 beams was 4<)) Pm. A polariser was placed in front

Of the probe beam, oriented at 450 to the plane of the pump polarisation. An analyser

placed before the detector, thus made possible the separate measurement of the probe

pulse components parallel and perpendicular to the pump pulse.
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Figure 0•.3 shows a typical result obtained. The sample is a I Snm gold colloid

in de-ionised water. Also shown on the same graph is the deflection for water as a

lunction of delay time. The polarisations of* the pump and probe beams are parallel.

25
-- • - Watcr

20Samnple 
V2()

. 15

10

5

0
-200 -150 -100 -50 0 50 100 150 200

Delay Time (fs)

Figure 6.3 : Sample Y, Probe Beam Deflection Vs Delay time.

As is evident from the graph, at zero delay, the deflection for sample Y is 17 pixels
while the deflection for pure water is 21 pixels. Taking the value of it for water to be

3.8x lO-16 cm 2 / W, we get, for the inclusions

n12 = -7.24x 10-17 cin / W.

n, and X( are related throutih the formula :(7)

3 ;r 3)
-2 = 2C (6.3)4 noeo

Using equation 6.3, therefore it is possible to obtain a value for X"I for the

samples measured. The results are tabulated in table 6.1.
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I 392 2.54x 10-- 1.99,1 -3.;)7x 10('

N? ,(5 7.05x 10-" 0.68SN 5. Mx 10 '

N 1.2()x ) 0)170 I.7()x 10

2 2 2.48x 1H> 3)473 9).27x 1(0

Pl 7.1 3x 10' 0.945 - ,.4x )0'

Q2 .17 1.94x 1o > 2.5,S, -7.(6x I)0

Q I 2.78x 10-" ).391 - 1.40x 10 :

S. 1,"-5 I .()2x 1()-. 1609 - .96x I) -

S2 6.20x 10)" ).499 -5.1 Ox 10-2'

S 2.48x 10(E-" 0.28 I - 1.70x 10-"

Y2 179 4.58x 10"4 0.375 --1.54x 1()- 2 '

YI 2.43x 10' 0.213 -2.27x IW)-

Ilable 0. 1 Ixpern clital Results

Six different samples were measured, with each sample, except M. being

measured at two or more concentrations. As was observed with previous experiments,

again there is no relationship between X") and particle size. However X(3) is again

found to be proportional to the square of the absorption coefficient. Figure 6.4 shows

this result.
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As was explained earlier, in chapter 2. the inolinearitv associated with the

actual gold particles is rclated to the effective nonlinearity of the solution through :

z" - X 3)(0.4)

\Where ;''u is the third order susceptibility of the gold particles, p is their volume

fraction and the factor 1, is a local field factor. At the surface plasmon resonance

frequency it is greater than unity and serves to enhance the effective nonlinearity of the

solution significantly. Off resonance however, f < I and Y 3 is, in fact, diminished.

This can be seen by comparing the results for %' at 06l6nm ( this chapter )with those

at 522 nm ( Chapters 3 and 5).

The field enhancement factor is size dependent in that it depends on the width of

the surface plasmon resonance band, which should in turn be proportional to the size of

the inclusions. However, in all the colloids measured, there were no significant

differences in the widths of the absorption bands, despite the disparity in sizes.

f, is determined using the equation:

A = 3(ed) (6.5)
c, + 2 ed

Where c (real) is the dielectric constant of the solvent ( dielectric matrix),

and -, (imaginary) is the dielectric constant of the gold particle.

At A =616nm, it turns out to he approximately (.7. much the same for all the

samples.

Using equation 6.4, therefore, Z1-3 can be determined. The results are tabulated

in table 6.2.
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S, mq)/c I'Parti/h'Si.-c "( ' )Z ; m ,

(A)

M 392 -3.97x I) -7.)0x 1()

N2 3,05 -5. Iox 1( " -3. 16x M-,

NI -l.70x 1() -0.21x 1(0

I2 5 -0 .27x 1(0' I.62x 10'

l I -.;.4()x -2.07x 10'

02 47 -7.90x I() - 1.74x 10-"

QI -3.4(x I-'' -5.22x l()M-"

S3 185 -3.90x 1M' -1.52x 10-"

S2 -5.1 ()x 1()- 2 3  -3.23x 10-I

SI -1.70x 10- 2" -2.68x 10- 7

Y2 179 -4.54x 10-23  -3.84x 10- 7

YI -2.27x 10-W23  -3.61 x 10-17

Table 6.2 3) values lor tie diflerent .unples.

The values obtained for X;3) are about an order of magnitude lower than those

obtained at resonance. ( ,A = 522nm ). This is to be expected as the experiment only

measures the real part of the effective susceptibility. In any case, the contribution of the

absorptive effect (predominantly imaginary) should be significantly reduced at this

wavelength.

The decay of the probe beam delcction as a f1unction 01 delay time between the

pump and probe beams yields information on the dynamics of the interaction. 'rhe

resolution of the experiment is liimited on the pulse width of the laser beam. I11 the

response time of the nonlinearitv is fast on the timcscale of the pulse width, then the

decay curve is equivalent to the autocorrelation profile of the beam. If, on the other

hand, the nonlinearity responds much more slowly, then the deflection decays with a

characteristic time dependent on the energy relaxation time, T, of the sample. In the

case of most of the samples measured, it turns out that T, is in fact fast on the timescale

of the pulse width which is 75 fs. This is evident by referring back to figure 6.3. Here.

the only thing that we can do is put an upper limit of 75 fs on T,. Two of the samples

show a slightly different behaviour. 'They are the two smallest colloids P and Q of sizes

of the order 50A. In these two cases, the deflection decays on a time scale of about 6M()

fs. The decay profile for the two samples is shown in figure 6.5
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Figure 6.5 : Samples P and Q, Probe Beam leflecthn Vs lelay Time.

The reason that these two samples behave differently to the rest is obviously

related their small diameter. When the size of the colloidal particle goes below a

particular threshold level, it starts to behave like a single molecule and molecular states

come into being. Molecular states characteristically decay on a much slower timescale

than electronic states. (????)
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CHAPTER 7

CONCLUSIONS

i-xperimental results, so far, have never shown such a suie dependence. The

reason being that the intrahand contribution (above) in actual metal crystallites is not the

sole polarisation mechanism. Two more mechanisms contribute there with quite

different behaviour that dominates that of the intraband term. ( )ne mechanism is the

interband term that arises from the electronic dipole transitions between die filled d band

states and the empty confined ones in the s-p band, and Lives a contribution that is

negative imaginary but size independent as the d electrons are unaffected by the

confinement.

The other mechanism is the hot electron contribution that results from the

modification of the population of the electron states, the Fermi-Dirac distribution,

caused by the elevation of their temperatures subsequent to the absorption of photons in

the resonant process, but before the heat is released to the lattice of the crystallite; this
leads to a contribution to X(3) that is positive imaginary and size independent.

From experiments performed so far, it seems that the dominant contribution to

X(3) comes from the third mechanism and also that even the interband term dominates

the intrahand term.
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